
SAS Work Shop Statistical Programs
DATA STEP College of Agriculture
Handout #1 HTTP://WWW.UIDAHO.EDU/AG/STATPROG

GOOD PROGRAMMING HABITS

1) Program Format

 It is a good idea to use indentation when writing programs (SAS or otherwise). While most

computer software packages are indifferent to indentation, its use will make your programs easier for

people to read. The 'block' nature of SAS lends itself to indentation very well. Blank lines between blocks

of code also improves readability.

Example 1

 BAD:

 DATA NEW; INFILE 'A:MY.DAT'; INPUT NAME $ AGE CLASS $
 GRADE $; PROC PRINT; VAR NAME GRADE; PROC SORT; BY
 CLASS; PROC PRINT;

 GOOD:

 DATA NEW;
 INFILE 'A:MY.DAT';
 INPUT NAME $ AGE CLASS $ GRADE $;

 PROC PRINT;
 VAR NAME GRADE;

 PROC SORT;
 BY CLASS;

 PROC PRINT;

Note that either of these sets of code will produce the same results. The second,

however, will be easier to interpret and debug (find & fix errors) if required. One might

think that this is inefficient but it is worth it in the long run. In version 8.0 and higher, the
1/2

SAS Work Shop Statistical Programs
DATA STEP College of Agriculture
Handout #1 HTTP://WWW.UIDAHO.EDU/AG/STATPROG

2/2

Advanced Editor will automatically indent for you.

2) Comments in Programs

 By using special symbols in SAS we can add to a program comment lines which

tell anyone reading it what the programmer had in mind when they wrote the code. This

can be very useful when programs are passed from person to person or the code is

seldom used. The special symbols tell SAS to skip these lines since they are only for

us. The format to use these is: /* any text here */. Any text written between the /* and

*/ will be ignored. Note that this could mean more than one line is passed over.

Example 2

 /* READ IN DATA FROM EXTERNAL FILE */

 DATA NEW;
 INFILE 'A:MY.DAT';
 INPUT NAME $ AGE CLASS $ GRADE $;

 /* PRINT OUT DATA. (VARIABLES NAME AND
 GRADE ONLY).
 */

 PROC PRINT;
 VAR NAME GRADE;

 OR

 DATA NEW; /* READ IN */
 INFILE 'A:MY.DAT'; /* DATA FROM */
 INPUT NAME $ AGE CLASS $ GRADE $; /* FILE */

 PROC PRINT; /* PRINT NAME */
 VAR NAME GRADE; /* AND GRADE */

	GOOD PROGRAMMING HABITS

