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Abstract Threespine stickleback fish (Gasterosteus aculeatus) have long been an
ecological and evolutionary model system. Stickleback exhibit remarkable patterns
of parallel adaptation among populations across their range, most notably repeated
colonization and adaptation in freshwater habitats from ancestral marine or anadro-
mous forms and repeated diversification into different freshwater ecotypes such as
lake/stream and benthic/limnetic. The phenotypic traits involved in this adaptive
evolution include physiology, behavior, life history, pigmentation, and numerous
aspects of body size, shape, and morphology, the genetic basis of which has been
elucidated through laboratory-based genetic mapping. With the advent of next-
generation sequencing and the availability of a well-assembled reference genome
for the species, numerous studies have identified genomic regions exhibiting signa-
tures of selection in natural populations. The combination of these approaches has
established numerous linkages among genotype, phenotype, environment, and adap-
tation. Here we review these results and assess alternative modes for the genetic
basis of parallel phenotypic adaptation in terms of the genetic architecture of the
traits and the source of adaptive variation across populations. We highlight examples
ranging from single genes of major effect to polygenic traits and from reuse of allelic
variation shared among populations to independent mutations across loci. Demo-
graphic scenarios such as serial colonization and adaptation, along with genomic
features such as inversion polymorphism, provide insights into how widespread
parallel adaptation in multiple phenotypes can occur. The diversity of genetic
mechanisms for parallel evolution in stickleback leads to the “Everyone Wins”
principle of biology—nearly any alternative mechanism plays a role in at least
some cases, and often multiple mechanisms act concurrently. Because of the wealth
of natural evolutionary experiments and the ever-expanding set of genomics and
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other tools available in this species, threespine stickleback will likely remain a key
model system for population genomics studies of adaptation.

Keywords Adaptive radiation · Gasterosteus aculeatus · Genome scan · GWAS ·
Parallel evolution · QTL mapping

1 Adaptive Evolution in Threespine Stickleback

1.1 Ecological Diversity and Parallel Evolution

With a nearly circumpolar marine distribution in the Northern Hemisphere and
ongoing repeated colonization of freshwater habitats, threespine stickleback fish
(Gasterosteus aculeatus) exhibits remarkable diversity in a wide range of pheno-
types (Fig. 1). This diversity, combined with their local abundance and ease of
collection, has made threespine stickleback an evolutionary model system for the
study of rapid and dramatic evolution of morphological, physiological, and behav-
ioral adaptations to new environments and, in particular, replicated colonization and
adaptation to a set of habitats distributed across the species range. Early studies
attempting to characterize the species were presented with a bewildering amount of
phenotypic diversity that challenged taxonomic groupings (Bell and Foster 1994).
Further research in the twentieth century began correlating phenotypic diversity with
habitat, suggesting that natural selection could probably account for much of the
observed variation (Hagen and McPhail 1970; Bell 1976). Stickleback became a
model system for adaptive radiation and sympatric diversification with the discovery
of evidence for character displacement in lakes where morphologically distinct types
coexisted, with links between morphology and resource use, and reduced gene flow
between morphotypes even in sympatry (Schluter and McPhail 1992; Schluter 1993,
1996).

A remarkable feature of stickleback diversity is that similar phenotypes can be
found repeatedly in similar environments in geographically isolated locations across
the species range, suggesting independent but phenotypically parallel adaptation.
For instance, Lavin and McPhail (1993) found repeated phenotypic differences
between lake and stream populations in British Columbia, arguing that phenotypic
similarities could be the result of parallel evolution. Since then the number of studies
of parallel evolution and adaptive radiation in stickleback has continued to grow,
along multiple phenotypic and environmental axes. With the advent of genomics and
other experimental tools that are readily applied in this species, many researchers
have combined various types of data to address the connections among genotype,
phenotype, environment, and adaptation. Table 1 presents a representative set
of publications focused on parallel evolution in threespine stickleback, based on a
simple and far-from-exhaustive web search. Not only has the frequency of such
publications steadily increased, but they are well-cited in the broader literature,
showing the influence of stickleback research on the field of evolutionary biology
(Fig. 2).
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Three main pairwise comparisons have been the focus of studies of stickleback
evolution and divergence: (1) marine versus freshwater, (2) stream versus lake, and
(3) benthic versus limnetic forms. It is generally accepted that extant marine
populations represent the ancestral threespine stickleback form (Bell 1977; Schluter
and McPhail 1992; Bell and Foster 1994; but see Morris et al. 2018), and the diverse
freshwater ecotypes are derived. There is also differentiation between truly marine
and anadromous populations, although this distinction is poorly known (Ahnelt
2018). Many studies have focused on external morphology, particularly the reduc-
tion in armor traits, such as lateral plates and spines, which often occurs with
colonization of freshwater from marine habitats (Bell et al. 2004). Marine stickle-
back nearly always have three dorsal spines, two pelvic spines (one on each side of
the body), an armored pelvis, and a full set of lateral armor plates running from
behind the head to the tail. Freshwater populations, however, exhibit a wide varia-
tion in the reduction in the number of dorsal spines, pelvic armor and spines, and

Fig. 1 Phenotypic variation
and popular appreciation of
threespine stickleback
(Gasterosteus aculeatus; top
three fish), as well as
ninespine stickleback
(Pungitius pungitius;
bottom two individuals).
Illustration by children’s
book author and naturalist
Beatrix Potter (1866–1943),
reproduced courtesy of the
Armitt Trust
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Table 1 A non-exhaustive survey of studies of parallel evolution in threespine stickleback,
showing the region in which populations were sampled, the primary axis of comparison, and
phenotypic and genetic data collected

Publication Region
Habitat
comparison Phenotypes Genetic data

Rudman
et al. (2019)

British Columbia,
Canada

Marine,
freshwater

Lateral plate morph
(high, low), ionome,
calcium uptake,
excretions

–

Verta and
Jones (2019)

Scotland; British
Columbia, Canada

Marine,
freshwater

Gene expression RNAseq

Miller et al.
(2019)

British Columbia,
Canada

Sculpin
presence,
absence

Body shape, armor
traits

mtDNA, WGS

Haenel et al.
(2019)

Scotland Marine,
acid lakes,
alkaline
lakes

Armor traits Pooled
RADseq

Xie et al.
(2019)

California, Alaska,
USA; British Columbia,
Canada

Marine,
freshwater

Pelvic armor Mutational
mechanism

Kitano et al.
(2019)

Japan; British
Columbia, Canada

Marine,
stream

Gene expression eQTL from
targeted SNP
genotyping

Liu et al.
(2018)

Denmark; Greenland Marine,
freshwater

Lateral plates, keel
plates

RADseq

Bassham
et al. (2018)

Alaska, USA Marine,
freshwater

– RADseq

Nelson and
Cresko
(2018)

Alaska, USA Marine,
freshwater

– RADseq

Hanson et al.
(2017)

British Columbia,
Canada

Lake,
stream

Gene expression Transcriptome
sequencing

Pujolar et al.
(2017)

Denmark Marine,
freshwater

Lateral plates Targeted SNP
genotyping

Mobley et al.
(2016)

British Columbia,
Canada

Benthic,
limnetic

Mating preference –

Erickson
et al. (2016)

British Columbia,
Canada

Marine,
benthic
freshwater

Skeletal morphol-
ogy, armor traits

GBS

Hanson et al.
(2016)

British Columbia,
Canada

Lake,
stream

Sexual maturity
(body color for
males, gravidity for
females)

–

Oke et al.
(2016)

British Columbia,
Canada

Lake,
stream

Morphological
measurements, gill
rakers

–

(continued)
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Table 1 (continued)

Publication Region
Habitat
comparison Phenotypes Genetic data

Conte et al.
(2015)

British Columbia Benthic,
limnetic

Body shape, armor
traits, gill rakers

Targeted SNP
genotyping

Mazzarella
et al. (2015)

Norway Salinity Body shape –

Hirase et al.
(2014)

California, Washington,
Alaska, USA; British
Columbia, Nova Scotia,
Canada; Japan;
Germany; Norway;
Scotland; Iceland

Marine,
freshwater

Gene copy number WGS

Glazer et al.
(2014)

British Columbia,
Canada; Washington,
Alaska, USA

Marine,
freshwater

Gill rakers Microsatellites,
InDel markers

Lucek et al.
(2013)

Switzerland Lake,
stream

Body shape, armor
traits, gill rakers

Microsatellites

Ravinet et al.
(2013)

Northern Ireland Lake,
stream

Body shape, armor
traits, gill rakers,
diet

Microsatellites

Moser et al.
(2012)

Germany; Austria;
Switzerland

Lake,
stream

Otoliths, body
shape, fecundity,
stomach content,
lateral plates

Microsatellites,
mtDNA

Natsopoulou
et al. (2012)

Iceland Rocky,
lava, mud
substrates

Parasite load MHC diversity
by SSCP

Deagle et al.
(2012)

British Columbia,
Canada

Lake,
stream

Morphological
measurements, lat-
eral plates

Targeted SNP
genotyping

Dalziel et al.
(2012)

British Columbia,
Canada

Marine,
stream

Gill rakers, ventric-
ular and pectoral
muscle, hemoglobin
concentration,
hematocrit

–

Hohenlohe
et al. (2012)

Alaska, USA Marine,
freshwater

– RADseq

Kaeuffer
et al. (2012)

British Columbia,
Canada

Lake,
stream

Body shape, armor
traits, gill rakers,
diet, trophic
position

Microsatellites

Kimmel et al.
(2012)

Alaska, Oregon, USA;
British Columbia,
Canada; Iceland

Marine,
freshwater

Opercle
morphology

–

(continued)
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Table 1 (continued)

Publication Region
Habitat
comparison Phenotypes Genetic data

Jones et al.
(2012)

California, Washington,
Alaska, USA; British
Columbia, Nova Scotia,
Canada; Japan;
Germany; Norway;
Scotland; Iceland

Marine,
freshwater,
benthic,
limnetic

Body shape WGS

Hohenlohe
et al. (2010)

Alaska, USA Marine,
freshwater

– RADseq

Ólafsdóttir
and
Snorrason
(2009)

Iceland Rocky,
lava, mud
substrates

Microhabitat, body
shape, armor traits

Microsatellites

Chan et al.
(2009)

British Columbia,
Canada; Alaska, USA;
Japan

Marine,
freshwater

Pelvic armor Microsatellites,
targeted
sequencing of
PitxI,
transgenics

Marchinko
(2009)

British Columbia,
Canada

Marine,
freshwater

Armor traits Targeted
genotyping of
Eda

Miller et al.
(2007)

British Columbia,
Canada; Washington,
California, USA; Japan

Marine,
freshwater

Gill and skin
pigmentation

Microsatellites

Coyle et al.
(2007)

Scotland Lake,
stream

Pelvic girdle and
pelvic spine

Microsatellites

Marchinko
and Schluter
(2007)

British Columbia,
Canada

Marine,
freshwater

Lateral plates,
growth rate

–

Ólafsdóttir
et al. (2007)

Iceland Marine,
freshwater

Spine length and
lateral plate mor-
phology, microsat-
ellite loci

–

Colosimo
et al. (2005)

British Columbia,
Canada

Marine,
freshwater

Lateral plates Microsatellites,
targeted
sequencing of
Eda

Boughman
et al. (2005)

British Columbia,
Canada

Benthic,
limnetic

Behavior (court-
ship), gill raker,
armor plate numbers

–

Colosimo
et al. (2004)

California, USA;
British Columbia,
Canada

Marine,
freshwater

Lateral plates Microsatellites

Cresko et al.
(2004)

Alaska, USA Marine,
freshwater

Armor traits Microsatellites

Rundle et al.
(2000)

British Columbia,
Canada

Benthic,
limnetic

Spawning
probability

–

Thompson
et al. (1997)

British Columbia,
Canada

Lake,
stream

– mtDNA

(continued)
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lateral plates, with some populations having lost nearly all of these. Early compar-
isons of lake and stream populations focused on the ecology of adaptive radiations
(Schluter and McPhail 1992; Schluter 1993, 1996) and parallel evolution (Lavin and
McPhail 1993), particularly in body shape phenotypes.

Both marine/freshwater and lake/stream stickleback population pairs are wide-
spread across the species range, including both sides of the North Atlantic and North
Pacific. In contrast, the coexistence of distinct bottom-dwelling (benthic) and open-
water (limnetic) forms within freshwater habitats is much less common, with
examples primarily from a few lakes in British Columbia. Their rarity may be
explained by the fact that the pairs most likely resulted from double invasions
facilitated by fluctuations in sea level in this region (Schluter 1996): the first oceanic
colonizers of these lakes evolved into a freshwater form, and then a second invasion
by oceanic sticklebacks displaced the first population to the benthic niche while
adapting to the alternative open-water limnetic niche (Taylor and McPhail 1999).
These pairs have provided examples of divergence in size, shape, feeding morphol-
ogy, body armor, mate preference, and behavior, which confer fitness advantages
when tested in the corresponding benthic and limnetic environments (Schluter and
McPhail 1992; Erickson et al. 2016).

1.2 Threespine Stickleback as a Model System

The threespine stickleback has become a model system for adaptive evolution from
multiple perspectives (Hendry et al. 2013). While the taxonomic implications of
diversification have been a continuing source of debate, the mechanisms of ecotype
formation and evolution of partial or complete reproductive isolation between
stickleback forms provide a model for understanding the processes of adaptive
radiation and speciation (Foster et al. 1998; McKinnon et al. 2004). Because of the
adaptation to different habitats and ecological niches in stickleback diversification,
the species has played a key role in the concept of ecological speciation—speciation

Table 1 (continued)

Publication Region
Habitat
comparison Phenotypes Genetic data

Lavin and
McPhail
(1993)

British Columbia,
Canada

Lake,
stream

Gill rakers, body
shape

–

We searched Web of Science for TITLE: (stickleback!) AND TITLE: (parallel! or repeat!) NOT
TITLE: (nine!) as of June 2019. Ten publications were removed as the word “repeated” in the title
did not refer to parallel evolution, leaving a total of 44 publications. This excludes relevant studies
without the specific keywords in the title (e.g., Raeymaekers et al. 2017; Stuart et al. 2017)
mtDNA mitochondrial DNA sequence, RADseq restriction site-associated DNA sequencing,
eQTL expression quantitative trait locus, SNP single-nucleotide polymorphism, WGS whole-
genome sequencing, MHC major histocompatibility complex, SSCP single-stranded conformation
polymorphism

The Population Genomics of Parallel Adaptation: Lessons from Threespine. . . 255



in which reproductive isolation occurs as a by-product of phenotypic divergence
resulting from adaptation to different ecological roles (Schluter 2001, 2009; Nosil
2012). Ecological communities feel the effects of these processes. For example,
divergence into benthic and limnetic ecotypes has been shown to have cascading
ecological effects on prey community structure, primary productivity, and dissolved
organic material (Harmon et al. 2009). Conversely, the collapse of ecotypes into

Fig. 2 (a) Annual counts of published studies of parallel evolution in threespine stickleback as of
June 2019 that are shown in Table 1. (b) Total number of times that all of these publications have
been cited per year
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a single interbreeding population (termed “reverse speciation” or “introgressive
extinction”) can also have ecological consequences. For instance, Rudman and
Schluter (2016) found that when benthic and limnetic forms combined into a single
intermediate form, effects on relative abundances of prey included changes in the
pupating aquatic insects that emerged into the surrounding terrestrial environment.

A number of genomics and laboratory tools and resources have facilitated
stickleback research. The genome of the threespine stickleback is of a tractable
size (~460 Mb, in 21 chromosomes), and a high-quality reference genome assembly
has been available for some time (Kingsley et al. 2004; Jones et al. 2012). With the
advent of next-generation sequencing, threespine stickleback have been the focus of
early empirical studies in the field of population genomics (Hohenlohe et al. 2010;
Jones et al. 2012). They are also easily raised in the lab and subject to experimental
manipulation for developmental or physiological studies. To the extent that research
can uncover the developmental genetic basis of traits that play important roles in
ecology and parallel adaptation, stickleback can be a model for connecting evolu-
tionary patterns to developmental processes (“evo-devo”; Cresko et al. 2007; Miller
et al. 2014).

Despite the strong evidence that phenotypic changes in stickleback have evolved
in response to environmental conditions, particularly along the ecological axes
described above, there are comparatively few studies of the specific environmental
drivers of divergence. Most of these have focused on predation, parasites, and
salinity and/or pH. A few studies have found positive associations between spine
length and predation intensity (Moodie et al. 1973; Gross 1978; Reimchen 1995).
Large variation in pH and calcium among lakes has been linked to the evolution of
body size or armor in stickleback in these lakes (Giles 1983; Spence et al. 2013;
MacColl and Aucott 2014). Studies of environmental drivers of stickleback adapta-
tion have traditionally focused on the relationship between a single environmental
factor and the evolution of one or a small number of traits (Vamosi and Schluter
2002; Marchinko 2009), although this has begun to change (Bourgeois et al. 1994;
Raeymaekers et al. 2017; Stuart et al. 2017). The understanding of stickleback
diversity can benefit from viewing both the environment and phenotype as highly
multivariate and with complex relationships to fitness.

1.3 Genetics of Parallel Evolution

Parallel phenotypic evolution has been observed in a number of taxa, such as cichlid
and salmonid fishes (Elmer and Meyer 2011) and Anolis lizards (Mahler et al. 2013).
Several authors (Arendt and Reznick 2008; Elmer and Meyer 2011; Rosenblum et al.
2014; Bolnick et al. 2018) have addressed the distinction between “parallel” and
“convergent” evolution, which depends on how two populations or lineages arrived
at a similar phenotypic state; parallel implies a similar starting point (i.e., more recent
common ancestor or similar genetic basis), while convergent implies different
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starting points (i.e., distant and phenotypically distinct common ancestor or different
genetic mechanisms). The wealth of natural experiments and genomics tools in
stickleback allow direct investigation of the genetic basis of adaptive phenotypes.
However, the genetic basis of phenotypes shared among populations can be similar
or different in a multitude of ways (Arendt and Reznick 2008). First, it is important
to consider the level of biological organization at which the relevant genetic varia-
tion occurs (e.g., nucleotide, gene, network) (Rosenblum et al. 2014). For example,
mutations that affect different nucleotide positions within the same gene and thus
result in similar phenotypes could be considered convergent at the gene level but not
at the nucleotide level (Fig. 3). Variation may be inherited from a common ancestor,

Population X Population Y

(A) shared mutation:

(B) independent mutations, same gene:

(C) independent mutations, same pathway:

(D) independent mutations, different pathway:

Fig. 3 Alternative genetic scenarios for parallel phenotypic evolution (Elmer and Meyer 2011;
Rosenblum et al. 2014). Similar phenotypes evolve in similar habitats in two independent
populations X and Y (e.g., stickleback in two freshwater bodies) from a divergent common ancestor
(e.g., marine). Bars represent genes interacting with each other in a pathway that affects the
phenotype, and stars represent any type of mutation (nucleotide substitution, insertion/deletion,
etc.) that affects either regulatory or coding regions of the gene. (a) A single mutation in one gene
creates an allele that is present in the ancestral population, and selection acts on this allele in both the
descendant populations. (b) Two different mutations in the same gene lead to similar phenotypes in
each population. (c) Two different mutations in different genes produce similar phenotypes by
affecting the same genetic pathway. (d) Independent mutations affect genes in different pathways,
but nonetheless have similar phenotypic effects. In the case of polygenic phenotypes, some
combination of any or all of these scenarios may play a role together
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thus providing the shared genetic mechanism of parallel evolution, in the case of
adaptation from standing variation (Barrett and Schluter 2008). Alternatively, it may
reflect independent genetic changes between populations or lineages. Phenotypic
variation may also be polygenic, so that parallel phenotypic change may depend on
genetic changes in overlapping suites of loci or pathways. To address these cases,
and to make use of quantitative trait locus mapping studies, Conte et al. (2012)
developed a metric of proportional similarity to reflect the proportional contributions
of genes to parallel phenotypes.

Whether parallel phenotypic evolution relies on one or many genes, or indepen-
dent variants versus shared ancestral variation, depends on a large number of factors
that are specific to the genetic basis of the phenotype and the demographic history of
the populations (Rosenblum et al. 2014). It is possible that different phenotypes
show different patterns within the same set of populations or that parallel evolution
of a polygenic phenotype reflects a mixture of shared ancestral variation and
independent mutations (Fig. 3). Indeed, examples of all of these scenarios can be
found in threespine stickleback. Below we describe the primary population geno-
mics approaches that have been taken to understand the genetics of adaptation in
stickleback, highlight examples of the various genetic modes of parallel phenotypic
evolution, and discuss how demographic and genomic conditions can facilitate
repeated, rapid adaptation in this species. With the power of population genomics,
threespine stickleback continue to reveal insights into the genetics of adaptation.

2 Identifying Functional Loci in Stickleback

The advent of molecular population genetics has enabled direct investigations of
important factors in the evolution of threespine stickleback and the relationships
among genotype, phenotype, fitness, and the environment (Hendry et al. 2013). Two
broad areas of focus have been most widely applied to understand the genetic basis
of adaptation: first, genetic mapping of traits—identifying loci in the genome that
explain some proportion of variation in a particular phenotype, directly linking
genotype to phenotype. Second, genome scans for selection or genotype–environ-
ment association (GEA)—identifying loci that show either evidence of a response to
selection or correlation with environmental variables in natural populations, linking
genotype to fitness or the environment. Mapping studies can be grouped as tradi-
tional genetic mapping approaches, which use a laboratory cross of individuals with
divergent phenotypes and identify marker loci that segregate with phenotypic
variation, termed quantitative trait loci (QTL), and genome-wide association studies
(GWAS), which identify associations between marker loci and phenotypic variation
in an outbred population (Wellenreuther and Hansson 2016). Genetic markers, such
as microsatellites, can be used for traditional mapping because the relatively large
linkage blocks present in a laboratory cross can be genotyped with fewer markers.
However, GWAS, genome scans for selection, and GEA require larger numbers of
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markers to survey the entire genome, because they use information from outbred
populations in which linkage blocks are much smaller and a higher density of
markers is required to detect functional loci.

2.1 Mapping

Accordingly, the first major insights into the genetic basis of parallel adaptation in
stickleback grew out of traditional mapping studies using laboratory crosses of
phenotypically divergent individuals. For instance, Peichel et al. (2001) created a
linkage map based on 227 informative microsatellite markers and used it to map
traits involved in benthic–limnetic differentiation in freshwater stickleback in British
Columbia. Shapiro et al. (2004) used an overlapping set of markers to link the pelvic
armor phenotype to the gene Pitx1, which also affects hind limb development in
mice. Other genes identified in QTL studies of stickleback are also known to have
similar functions in widely divergent model organisms (Miller et al. 2007). The well-
studied lateral plate phenotype, which typically diverges rapidly between marine and
freshwater habitats, was mapped to a single Mendelian locus of major effect and
traced to the gene Ectodysplasin (Eda) in a series of microsatellite-based mapping
studies (Colosimo et al. 2004, 2005; Cresko et al. 2004). Other studies have used
microsatellite or single-nucleotide polymorphism (SNP) markers to identify QTL for
multivariate phenotypes such as body shape (Albert et al. 2008; Liu et al. 2014),
skeletal morphology (Kimmel et al. 2005; Miller et al. 2014), and pigmentation
(Greenwood et al. 2011). The advent of genomics tools has greatly increased the
number of genetic markers that can be efficiently genotyped in non-model organisms
(Ellegren 2014; Kratochwil and Meyer 2015). This means that the density of markers
possible across the stickleback genome with tools such as restriction site-associated
DNA sequencing (RADseq) (Hohenlohe et al. 2010) is sufficient to identify the
relatively small linkage blocks present in outbred populations (Hohenlohe et al.
2018). For instance, while much of the repeated evolution of lateral plate number in
freshwater stickleback populations involves substantial reduction in number of
lateral plates, it is quite rare for lateral plates to be lost altogether (Magalhaes et al.
2016). Mazzarella et al. (2016) used RADseq in a GWAS framework to identify the
genetic basis of the plateless phenotype in Norwegian stickleback populations,
finding this trait to be polygenic.

A few general conclusions can be reached about the genetic basis of phenotypic
variation in stickleback from the results of QTL mapping studies. Not surprisingly,
there are relatively few loci with a large effect on phenotypic variation and many
more loci with small effect (Peichel and Marques 2016). QTL also appear to be
clustered across the genome; for instance, chromosomes IV and XXI have a higher-
than-expected number of QTL across phenotypic traits after accounting for chromo-
some size and gene number (Peichel and Marques 2016). Of course it should be
noted that the phenotypes that have been the subject of QTL mapping studies in
stickleback are not a random sample of variable phenotypes but instead are focused

260 P. A. Hohenlohe and I. S. Magalhaes



on ecologically important traits and those that exhibit parallel evolution across
stickleback ecotypes.

To compare across replicate natural populations, phenotypic variance can be
attributed to multiple loci and their proportional effect quantified. The growing
number of comparable mapping studies allows for meta-analysis of the degree of
overlap in loci that contribute to parallel phenotypic evolution (Conte et al. 2012;
Peichel and Marques 2016). For instance, in a pair of comprehensive QTL mapping
studies of parallel evolution in benthic freshwater sticklebacks in British Columbia,
Conte et al. (2015) and Erickson et al. (2016) mapped multiple phenotypic traits and
compared overlap of QTL across lakes. Traits included body shape morphometrics
and skeletal meristic traits, including lateral plates, and the authors genotyped a large
number of SNP markers in each case. Again the results were mixed (Fig. 4); Conte
et al. (2015) found that at nearly half of the QTL, alleles showed the same association
with the same trait in the same direction. At other loci, genotype was associated with
the trait in one lake but not the other. At a smaller number of QTL, the genotype was
associated with the same phenotype in both lakes but in opposite directions,
suggesting different patterns of linkage disequilibrium between the marker and the
causative mutation. Erickson et al. (2016) found that just over half of the QTL were
unique to one of the three lakes tested, although some loci were significant for all
three.

Fig. 4 Overlapping QTL associated with phenotypic differentiation between benthic and limnetic
stickleback forms in two lakes in British Columbia. Only linkage groups (chromosomes) on which
QTL were found are shown, and the trait is given next to each QTL. Blue indicates parallel effects in
both the lakes; gray indicates effects in one lake but not the other; red indicates effects in opposite
directions in each lake; tan indicates QTL for which two or more models cannot be distinguished.
Reproduced with permission from Conte et al. (2015)
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To extend from QTL mapping to selection and parallel evolution in nature, QTL
identified in a laboratory cross can be tested for association with the same phenotype
or signatures of selection across multiple natural populations, using targeted marker
genotyping or sequencing. Examples can be found between the ecotypes of estuarine
and freshwater (Raeymaekers et al. 2007), lake and stream (Berner et al. 2014), or
benthic and limnetic comparisons (Erickson et al. 2016). The results are mixed.
Many QTL in these studies do not show consistent patterns across populations,
suggesting that parallel phenotypic evolution is not attributable to divergence at
these loci. However, many other QTL, particularly those with large phenotypic
effect, do show consistent association with particular phenotypes or signatures of
selection across populations. Perhaps the most striking and well-studied example is
Eda, discussed in more detail below.

2.2 Genome Scans for Selection

Genome scans for selection assess the patterns of allelic variation, haplotype struc-
ture, and other features across populations to identify signatures of natural selection
acting on the genome (Fig. 5). Genome scans in threespine stickleback have made
use of both reduced representation genomic sequencing techniques like RADseq
(e.g., Hohenlohe et al. 2010; Liu et al. 2018) and whole-genome sequencing (e.g.,
Jones et al. 2012). These genomics techniques provide a dense set of markers across
the genome. When placed on the periodically improving stickleback genome assem-
bly (Glazer et al. 2015), a genomic set of markers can identify significant genomic
regions either by finding clusters of significant markers such as SNPs or by using
sliding window analyses (e.g., Fig. 5d shows both individual SNPs and a smoothed
sliding window average), and then candidate genes can often be identified in the
chromosomal neighborhood of such significant regions. This illustrates the value of
a physical map of the genome in population genomics research (Luikart et al. 2018).
Because of the role of adaptive divergence between habitats in stickleback evolution,
genome scans for selection have most commonly searched for outlier loci—loci with
differentiation (often quantified by FST) between populations significantly greater
than the genome-wide background. Most commonly, these studies have tested for
outliers between replicate habitat pairs such as marine–freshwater (Fig. 5b, e), lake–
stream (Fig. 5c, d, f), or benthic–limnetic, while a few have focused on biotic factors
such as the presence of prickly sculpin (Cottus asper), which is both a predator and a
competitor (Miller et al. 2019).

Outlier-based genome scans do not directly indicate which phenotype or envi-
ronmental variable is associated with the genetic signature of selection. In contrast,
genotype–environment association (GEA) analyses specifically test for relationships
between loci and specific environmental variables, such as temperature or salinity
(Hoban et al. 2016). For example, Guo et al. (2015) surveyed 10 stickleback
populations across temperature and salinity gradients in the Baltic Sea and used
RADseq to genotype a large number of SNP markers. They identified several loci
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Fig. 5 Examples of genetic mapping and genome scan studies in threespine stickleback. In all
cases, chromosomes I through XXI are aligned along the horizontal axis, and plots are rescaled to
correspond with each other; (b, c, and f) also show unassembled scaffolds, and (d and e) have
removed the sex chromosome XIX. (a) Percent variance explained (PVE) by QTL across multiple
studies (Peichel and Marques 2016). (b) Differentiation (FST) between three independent freshwater
and two marine populations in Alaska (Hohenlohe et al. 2010). (c) Significance of selection
signatures in a Bayesian analysis (log of posterior odds, log10PO) in lake–stream comparisons in
British Columbia (Deagle et al. 2012). (d) Differentiation (FST) between lake and stream
populations in Alaska (Feulner et al. 2015). (e) Differentiation (FST) between marine and freshwater
populations in Denmark (Liu et al. 2018). (f) Differentiation (residual FST) between lake and stream
populations in British Columbia (Roesti et al. 2012). (g) Genotype–environment association with
salinity (log of Bayes factors) in populations across the Baltic Sea (Guo et al. 2015)
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across the genome associated with each of these environmental variables (Fig. 5g),
including several that matched outlier loci found in previously published genome
scans of marine–freshwater comparisons. Rennison et al. (2019) combined a genome
scan for outlier genomic windows of differentiation between lake and stream
populations with GEA methods to detect associations between genotype and both
environmental variables and morphology. Multiple genomic regions were associated
with lake–stream differentiation, abiotic environmental factors, diet, and morphol-
ogy, and these regions exhibited some clustering on particular chromosomes, such as
IV and VII (as evident in Fig. 5). However, while there was some overlap among
categories, it was not significant at a genome-wide scale. Less overlap in genomic
regions associated with adaptation to salinity was observed between threespine and
ninespine stickleback (Pungitius pungitius) (Raeymaekers et al. 2017).

The large and growing number of mapping and genome scan studies in stickle-
back allows for comparative meta-analyses. Multiple studies have identified con-
centrations of functional loci in the stickleback genome (Peichel and Marques 2016).
For instance, note the prevalence across the studies in Fig. 5 of significant loci on
chromosome IV, which is the chromosome containing Eda. Many of the same tools
have been shared by the stickleback research community and applied across QTL
mapping, genome scan, and GEA studies, allowing direct comparison of the same
loci across a large number of populations and studies. For instance, a largely
overlapping set of microsatellite loci has been used following Peichel et al. (2001)
(Table 1). Most RADseq-based studies, starting with Hohenlohe et al. (2010), have
applied a similar protocol even down to the restriction enzyme used (SbfI), which
again means that a common set of loci are interrogated. As whole-genome sequenc-
ing becomes more prevalent (Jones et al. 2012), this pattern of comparability among
studies continues.

3 Population Genomics of Parallel Adaptation

3.1 Shared Variation at a Gene of Major Effect

The best-known example of a gene of major effect in threespine stickleback is
Ectodysplasin (Eda), associated with the repeated reduction in lateral plates com-
monly seen in adaptation to freshwater habitats. A region of linkage group IV was
first linked to the lateral plate phenotype by genetic mapping (Colosimo et al. 2004;
Cresko et al. 2004). Laboratory complementation studies established that the same
gene was involved in parallel adaptation to freshwater habitats (Cresko et al. 2004),
and fine-scale mapping and sequencing determined that repeated evolution of the
low-plated phenotype resulted from a shared allele at Eda estimated to be 2 million
years old (Fig. 6; Colosimo et al. 2005). Further work established that selection on
the Eda region, particularly evidenced by elevated differentiation at this locus
between marine and freshwater populations, was widespread across the Atlantic
(Mäkinen et al. 2008) and Pacific Ocean basins (DeFaveri et al. 2011). Subsequent
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genome scans for selection between marine and freshwater populations have
found elevated genetic differentiation around Eda across the range of the species
(Hohenlohe et al. 2010; Jones et al. 2012; Terekhanova et al. 2014; Ferchaud and
Hansen 2016). Roesti et al. (2015) also found elevated differentiation in the chro-
mosomal region around Eda in lake–stream comparisons, also corresponding to
differences in lateral plate phenotypes.

The repeated use of a shared, ancient allele at Eda in lateral plate reduction
demonstrates that this parallel evolution relies on standing genetic variation present
in the marine population (Fig. 3a). Evolution from standing genetic variation can be
remarkably rapid, occurring over just a few decades (Lescak et al. 2015; Marques
et al. 2018), demonstrating the strength of selection in newly colonized freshwater
habitats. However, the situation is more complex than it may seem. Selection for
reduced lateral plates has been linked to predation by insect larvae in freshwater
(Marchinko 2009), but Eda haplotypes also appear linked to growth rate (Barrett
et al. 2008, 2009a), behavior including propensity to migrate between saltwater and
freshwater habitats (Barrett et al. 2009b), and immune system function (Robertson
et al. 2017). In some cases, for example in northern Europe, it appears that standing
variation at Eda is not available, and a similar phenotype is achieved by reduction in
lateral plate size (Leinonen et al. 2012) or by genetic changes at other loci (Pujolar
et al. 2017) (Fig. 3c, d).

Fig. 6 Widespread reuse of a shared haplotype at the Eda gene across the threespine stickleback
range in adaptation to freshwater habitats. (a) Relationships among sequences at Eda show two
distinct clades corresponding to lateral plate morph, and the “low morph” allele is shared across
ocean basins. (b) Relationships among sequences at an unrelated locus reflect geographic region
rather than plate morph. Reproduced with permission from Colosimo et al. (2005)
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3.2 Independent Mutations at a Large-Effect Gene

In contrast to the ancient Eda haplotype clade shared in stickleback populations
across the species range, a different major-effect locus shows evidence of repeated
independent mutations with similar phenotypic effects (Fig. 3b). The pelvic girdle
and spines found in marine stickleback led to the genus name Gasterosteus (“bony
stomach”), but like the lateral plates, pelvic armor is often reduced in the adaptation
of stickleback to newly colonized freshwater habitats from ancestral marine
populations (Bell and Foster 1994). Also like lateral plates, loss of pelvic armor
may be linked to changes in vertebrate and invertebrate predators as well as calcium
ion availability in the different habitats (Shapiro et al. 2004). Laboratory crosses
found pelvic armor to be a Mendelian trait, and genetic mapping traced the variation
to the pituitary homeobox transcription factor I (PitxI), which is remarkable because
of this gene’s role in hind limb development in mice (Cresko et al. 2004; Shapiro
et al. 2004). Stickleback with reduced pelvic structures exhibited reduced expression
of PitxI in pelvic precursor tissue during development (Shapiro et al. 2004), and PitxI
expression was implicated in pelvic reduction in both Atlantic and Pacific stickle-
back populations (Cresko et al. 2004; Shapiro et al. 2004; Coyle et al. 2007).

Chan et al. (2010) tested allele-specific expression patterns in F1 crosses and used
fine-mapping and transgenic techniques to determine that multiple independent
deletion mutations in a tissue-specific enhancer of PitxI had resulted in the parallel
phenotype of loss of pelvic structures. These mutations were positively selected
during adaptation to freshwater habitats, meaning that parallel evolution in this
case was driven by independent mutations that nonetheless had very similar genetic
mechanisms leading to similar phenotypes. This genomic region appears to be
particularly prone to a high rate of double-stranded DNA breaks and deletion
mutation (Chan et al. 2010; Xie et al. 2019), so this is an example of mutational
bias facilitating parallel evolution (Rosenblum et al. 2014).

3.3 Polygenic Adaptation

Single genes of major effect on an important phenotype, such as Eda and PitxI, may
be more the exception than the rule in adaptive evolution of stickleback. A large
number of QTL mapping studies and genome scans have generally identified a larger
number of loci contributing to phenotypic variation and adaptation. In their review of
QTL studies, Peichel and Marques (2016) found a similar pattern of few genes of
large effect and many genes of smaller effect, and this pattern held across traits
related to feeding, body shape, defense, and other categories. Similarly, genome
scans for local adaptation typically identify multiple outlier loci or loci associated
with environmental variables (Fig. 5). While there may be some clustering of genes
that contribute to ecologically relevant phenotypes, multiple genes across multiple
chromosomes still contribute to phenotypic variation that is under selection during
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colonization of novel habitats. This is particularly true for complex, multivariate
traits, for example, the body shape differences that play an important role in benthic–
limnetic divergence (Schluter 1993; Erickson et al. 2016).

4 Mechanisms of Rapid, Parallel Evolution

4.1 Recurrent Colonization and Standing Genetic Variation

Several factors may play a role in the remarkable parallel evolution observed in
stickleback. As described above, parallel phenotypic evolution in stickleback
appears to rely on a mix of independent mutations that produce similar phenotypes
and shared ancestral variation that is subject to repeated selection in independent
populations. Evolution from standing genetic variation can occur quickly because
there is no waiting time for mutations to appear, and so the remarkably rapid
evolution observed in some stickleback populations (e.g., Lescak et al. 2015;
Marques et al. 2018) depends on selection acting on existing alleles.

Schluter and Conte (2009) proposed the “transporter hypothesis” to explain this
phenomenon, named for the transporter in the television series Star Trek, in which
humans or objects could be disintegrated in one place and transported to another
location, where they are then rapidly reassembled. Under this model, adaptation to
freshwater habitats involves alleles at multiple loci affecting traits such as morphol-
ogy, life history, and behavior, so that a freshwater-adapted genotype is a multi-locus
combination. Because most marine stickleback are either anadromous or breed
in estuarine or coastal habitats, despite some reproductive isolation, there is still
opportunity for gene flow between freshwater and marine populations. This
will carry freshwater alleles into the marine population, where the multi-locus,
freshwater-adapted genotypes will be broken up by recombination in subsequent
generations and exist at low frequency, potentially subject to negative selection.
Nonetheless, colonization into new freshwater habitats will carry some of these
alleles, where they will again be favored by selection. The actions of selection and
recombination will reassemble the multi-locus freshwater genotype, and the trans-
porter process is then complete. The rapid evolution observed in stickleback from
marine to freshwater, and subsequently into multiple different freshwater ecotypes,
relies on an ancestral marine population that is relatively old, large, and able to
maintain high levels of genetic diversity, with repeated colonizations into relatively
new freshwater habitats (Liu et al. 2016).

This demographic model of standing variation is consistent with several obser-
vations (Terekhanova et al. 2014; Marques et al. 2018; Haenel et al. 2019). For
instance, the low-plated Eda haplotype that has contributed to parallel evolution is
known to occur in marine stickleback, although at very low frequencies (Colosimo
et al. 2005; Barrett et al. 2008). Many of the freshwater-adapted alleles, including
Eda, are known to be very old and much older than many of the freshwater habitats
in which stickleback are currently found, such as those that appeared only after the
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Pleistocene glaciation (Nelson and Cresko 2018). In fact, variants that characterize
marine–freshwater divergence average several million years old, suggesting that
they have persisted through multiple recurrent cycles of selection in freshwater
habitats and gene flow back into the marine population (Nelson and Cresko 2018).
Roesti et al. (2014) described a characteristic pattern of genomic variation around
these recurrently selected loci, a peak-valley-peak pattern of FST, which is predicted
based on population genomic models and observed in marine–freshwater stickleback
comparisons. Barrett et al. (2009b) even found the intriguing result that the Eda
haplotype is associated with migration behavior, facilitating the movement of this
freshwater-adapted allele back into the marine population where it can contribute to
subsequent freshwater colonization. Finally, the results described above in which
multi-trait parallel evolution tends to involve a mix of shared and non-shared
variation among derived populations are also consistent with the transporter
model. Because freshwater-adapted alleles are at low frequency in the marine
ancestor, each new colonization of freshwater habitat may by chance include some
and not others in the founding individuals, and this will drive the degree of
parallelism (Leinonen et al. 2012; Pujolar et al. 2017).

4.2 Genomic Mechanisms

Several genomic features may also facilitate parallel evolution in stickleback by
making it easier for a population to respond to selection in a newly colonized habitat.
Multi-locus genotypes can be maintained in several ways, so that selection does not
need to act independently on each locus; instead, if multiple favored alleles co-occur
in individuals, selection on multiple phenotypic traits can act synergistically. First,
for a few generations after gene flow from a derived (e.g., freshwater) population
back into the ancestral (e.g., marine) one, freshwater-adapted alleles will continue to
be in linkage disequilibrium (LD) with each other, meaning that they are statistically
more likely to co-occur than the expectation based on their frequencies in the
population. Even when they are on different chromosomes with free recombination
between them, LD between these alleles decays in an exponential process, and there
is evidence that freshwater-adapted alleles exist to some extent in LD with each other
in the marine stickleback population even across chromosomes (Hohenlohe et al.
2012). Within chromosomes, many freshwater alleles appear clustered as described
above, which will reduce the recombination rate between them and allow LD to
persist for longer periods. In fact, especially with the recurrent colonization of the
transporter model, there is a theoretical reason to expect that these loci will become
clustered over evolutionary time (Yeaman 2013). Rates of recombination also vary
across the genome, so that freshwater alleles that are co-localized in regions of low
recombination will be maintained longer in LD, and indeed several authors (Roesti
et al. 2013; Marques et al. 2016; Samuk et al. 2017) have found that regions of low
recombination contribute to rapid adaptation. Finally, chromosomal inversions
greatly reduce the rate of recombination, and there is ample evidence that inversion
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polymorphisms are common in stickleback and that they contain clusters of func-
tionally important loci contributing to parallel adaptation (Jones et al. 2012; Feulner
et al. 2013; Bassham et al. 2018). All of these genomic features suggest that the
transporter model of rapidly reassembling multi-locus genotypes adapted to a newly
colonized habitat is not as unlikely as it may seem.

5 Conclusions: The “Everyone Wins” Principle of Biology

Threespine stickleback have become a model system in evolutionary biology and
population genomics for a number of reasons. Aside from being amenable to genetic
and laboratory studies, they exhibit remarkable patterns of parallel evolution across a
number of phenotypic and environmental axes at multiple spatial and temporal
scales, giving biologists a wealth of replicate natural experiments to investigate.
Stickleback have been the focus of multiple genome scans for selection, using
reduced representation sequencing approaches like RADseq, helping to refine
these techniques and improve their applicability to non-model taxa (Jensen et al.
2015). Stickleback also provide an example for how genome scans can be extended
with specific data on environmental variables, ecology, or specific phenotypes
(Haasl and Payseur 2015). Although the taxonomy of stickleback ecomorphs may
continue to be a source of debate, the divergence of stickleback forms has informed
our understanding of speciation processes (Schluter 2009; Hendry et al. 2013;
Lackey and Boughman 2017).

A large number of studies have identified the genetic mechanisms of parallel
evolution in threespine stickleback, ranging from single genes of major effect to
highly polygenic phenotypes, from shared variation to novel mutations, and from
single-nucleotide changes to structural variations such as inversion polymorphisms.
This leads to what we might call the “Everyone Wins” principle: When multiple
plausible mechanisms are proposed to explain some biological pattern, it is likely
that all of them play a role in at least some instances, and further they are likely
sometimes to co-occur with interesting and important interactions. Threespine
stickleback exemplify this view, as they show examples of nearly all the mechanisms
of parallel evolution proposed (Rosenblum et al. 2014; Bolnick et al. 2018). This is
certainly in part because of the research effort that has been directed toward this
taxon, but we suggest that the Everyone Wins principle is more generally an inherent
outcome of the complexities of biological systems.

6 Future Directions

Threespine stickleback are likely to continue to be a valuable evolutionary model
system. As the costs of DNA sequencing continue to drop, we anticipate that more
studies will use whole-genome sequencing rather than the reduced representation
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approaches that have been applied. To date, whole-genome sequencing has been
used on a relatively small number of representative individuals (e.g., Jones et al.
2012; Liu et al. 2016), but it is now becoming feasible for studies that require genetic
data on larger numbers of individuals across many populations. This will allow fine-
mapping of causal variants in a single experiment, identification of genomic struc-
tural variation, and more. Because stickleback are relatively easy to work with in the
laboratory, they are amenable to the ever-expanding toolkit of genetic manipulation
and developmental and physiological studies. This will allow continued understand-
ing of the mechanistic basis of stickleback phenotypes and direct linkages between
mechanism and adaptation in natural populations.

A few avenues are promising for future work in threespine stickleback. Studies
that explicitly combine data on genotype, phenotype, fitness, and the environment
(e.g., Rennison et al. 2019) are best-suited to illuminate all the interactions among
these factors and gain a comprehensive understanding. Expanding from DNA
sequencing to transcriptomics to provide direct estimates of gene expression, as
well as directly assessing the role of phenotypic plasticity, will further reveal
important aspects of genetic variation (Morris et al. 2014). The role of epigenetics,
particularly in rapid parallel evolution, is still relatively unknown but may be critical
(Heckwolf et al. 2019). Behavior is a notoriously difficult phenotype to unravel, in
part because of the potential roles of plasticity and epigenetics in addition to
genetics, but stickleback are a tractable system for behavioral genomics, particularly
for behaviors related to mate choice and parental care (e.g., Mobley et al. 2016; Stein
and Bell 2019). Finally, the microbiome is a fairly unexplored area that may have a
substantial impact on stickleback phenotypes and adaptation (Small et al. 2017;
Steury et al. 2019).

These research directions will keep threespine stickleback relevant into the future
for continuing progress in understanding the processes of evolution. Specific knowl-
edge about the genetic modes of adaptation, such as the saltwater–freshwater
transition, can be extended to related species, such as other fish taxa facing similar
environmental challenges. More generally, because stickleback exhibit such a diver-
sity of modes of adaptation across replicate populations, they will continue as a
model for understanding the interactions among multiple genetic processes during
adaptation to novel or recurrent environments.
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