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Abstract Population genomics is advancing our understanding of evolution, ecol-
ogy, conservation, agriculture, forestry, and human health by allowing new and
long-standing questions to be addressed with unprecedented power and accuracy.
These advances result from plummeting costs for DNA sequencing, which makes
genotyping feasible for hundreds to millions of individuals and loci, and also allows
for the study of variation in gene expression, epigenetic variation, and proteins. The
increased power also results from the development of innovative software, statistical
approaches, and models to extract information from massive next-generation
sequencing datasets. Among the most exciting developments are conceptually
novel approaches that are advancing understanding about inbreeding and outbreed-
ing depression, adaptive gene flow, population demographic history, and the geno-
mic basis of local adaptation and speciation. Remaining challenges in applying
genomics to natural and managed populations include the limited understanding
and availability of validated bioinformatics pipelines for genotyping and analyzing
genomic data. We also lack knowledge of best practices and general guidelines for
filtering and genotyping genomic data including restriction site-associated DNA
sequences (RAD), targeted DNA capture, and pooled sequencing. Finally, we
emphasize the need for continued rigorous teaching of population genetics theory,
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so that the next generation of population genomicists can ask well-informed ques-
tions and interpret next-generation sequence datasets.

Keywords Adaptation · Community genetics · Conservation genetics · Ecological
genomics · Epigenetics · Evolutionary genomics · Landscape genomics · Population
genetics · Selection detection

Molecular markers have totally changed our view of nature (Schlötterer 2004).

Population genomics is a new term for a field of study that is as old as the field of genetics
itself, assuming that it means the study of the amount and causes of genome-wide variability
in natural populations (Charlesworth 2010).

Population genomic tools have revolutionized many aspects of biology, as detailed through-
out the chapters of this volume (Hohenlohe et al. 2018).

1 Introduction

New and long-standing questions in ecology, evolution, conservation biology, and
related fields can now be addressed with unprecedented power and accuracy using
population genomics approaches. This power results largely from new sequencing and
genotyping technologies that produce enormous amounts of data (Schlötterer 2004;
Narum et al. 2013; van Dijk et al. 2018; Sedlazeck et al. 2018) but also from new
statistical approaches and software (Paradis et al. 2017; Ceballos et al. 2018; Cooke
and Nakagome 2018; Faria et al. 2018; Gruber et al. 2018; Hendricks et al. 2018;
Knaus and Grünwald 2017; Zhang et al. 2018). These molecular and computational
approaches are now within reach of many biologists in terms of costs, ease of data
production, and availability of computational tools. This chapter provides an overview
of the concepts and primary approaches employed to study genome-wide genetic
variation in natural and managed species and populations. Some of these approaches
are not yet widely used but are emerging in the literature on population genomics.

Population genomics has been broadly defined as the simultaneous study of
numerous loci and genome regions to better understand the roles of evolutionary
processes (such as mutation, genetic drift, gene flow, and natural selection) that
influence variation across genomes and populations (Black et al. 2001; Luikart et al.
2003). This definition emphasizes understanding of locus-specific effects like selec-
tion against the background of genome-wide effects such as demography and genetic
drift in order to improve assessments of adaptive evolution, the effective population
size, gene flow, admixture, inbreeding and outbreeding depression, speciation, and
the genomic basis of fitness (Fig. 1) (Allendorf et al. 2010; McMahon et al. 2014;
Hunter et al. 2018).

Hohenlohe et al. (2010a) outlined a novel conceptual framework for population
genomics that emphasizes the understanding of patterns of genetic variation and
evolutionary processes in all genome regions by plotting population genetic statistics
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across each chromosome using many mapped loci (Fig. 2; Box 1). An example of a
population genomics approach is measuring a population genetic summary statistic,
e.g., genomic diversity, population differentiation, or gene expression, as a contin-
uous variable along chromosomes to help identify loci under selection, chromosomal
islands of adaptive divergence, or alleles associated with a phenotypic trait (see also
Fig. 3 in Luikart et al. 2003; Hohenlohe et al. 2010b; Ellegren 2014; Kardos et al.
2015b).

Allendorf (2017) and Hohenlohe et al. (2018) defined population genomics as
requiring a sufficient density of DNA markers to detect forces affecting any partic-
ular genomic region, e.g., genes under selection, regions of reduced recombination.
Here, we provide a narrow sense definition of population genomics as the use of

Candidate selected 
(adaptive) loci

Step 1
Sample individuals of different 

populations, traits, and/or environments

Step 2
Genotype loci genome-wide (using 

mapped loci if possible (narrow sense))

Step 3
Identify outlier loci & genome regions 
associated with traits or environments 

Step 4a
Compute evolutionary or 

demographic parameters without 
using outlier loci, or by down-

weighting them (for example, by 
modeling)

Step 4b
Test for causes of outlier 

behavior (for example, selection) 
and use adaptive information for 

biodiversity conservation or
evolutionary inferences

Neutral loci 

Fig. 1 Conceptual framework of main steps in a population genomics approach used to identify
outlier loci under selection (or genotyping errors) and also to improve estimates of population
history and demography using the selectively neutral loci. In Step 1, individuals can be sampled
from different phenotypes or environments to help test for adaptive gene marker associations and to
dissect the genomic basis of phenotypes, local adaptation, adaptation to captivity, artificial selec-
tion, or speciation. Step 2 requires a genetic linkage map or a physical map (Sects. 3.1 and 3.2) to
localize genome regions under selection and to ensure high marker density (narrow sense
approach). However many unmapped loci can be used in broad sense genomics (Figs. 3 and 4).
Step 3 could employ conceptually novel approaches to identify “outlier loci” or chromosomal
regions that behave unlike most other loci in the genome and therefore could be under selection or
associated with phenotypic traits. Outlier loci under selection can bias estimates of neutral popu-
lation genetic parameters (Step 4a) such as gene flow, effective population size, and structure.
Figure modified from Luikart et al. (2003)
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conceptually novel approaches to address questions intractable by traditional
genetic methods by using high-density genome-wide markers (e.g., DNA, RNA,
epigenetic marks) to provide high power to detect genomic regions associated
with traits or evolutionary processes such as fitness, phenotypes, and selection
(Box 1). This definition combines the requirement for conceptual novelty aspect

Fig. 2 A population genomics perspective and conceptual framework. (A) Traditional population
genetics takes data on alleles (colored bars), grouped within individuals (solid boxes) and
populations (dashed boxes), and calculates summary statistics to make inferences about evolution,
such as nucleotide diversity (π) and population differentiation (FST). (B) Population genomics takes
data on haplotypes within a population and calculates summary statistics as continuous variables
along the length of the genome, such as π and the allele frequency spectrum (Tajima’s D). The
different types of evolutionary processes leave different signatures in these distributions: (i) hard
selective sweep, (ii) region linked to hard sweep, (iii) neutral expectation, (iv) balancing selection,
(v) neutral expectation, and (vi) soft sweep. (C) The coalescent structure of ancestral relationships
among alleles within a population also reflects these processes along the genome. (D) Given these
genomic processes within a population, statistics comparing genetic variation across populations,
such as FST, can also indicate genomic patterns of selection. (E) Collapsing the genomic distribu-
tion of a statistic into a frequency distribution provides an estimate of the genome-wide average,
allowing identification of statistically significant outliers (shaded regions). Reproduced with per-
mission from Hohenlohe et al. (2010a)
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from Garner et al. (2016) and Hohenlohe et al. (2010a), with the high-density marker
requirement of Allendorf (2017); it also explicitly includes multiple omics
approaches (transcriptomics, epigenomics, and proteomics).

Broad sense population genomics can be defined as the use of new genomics
technology and numerous loci to address questions in population genetics (e.g.,
Shafer et al. 2015; Garner et al. 2016; Hohenlohe et al. 2018) (Box 1). We include
broad sense approaches here because some are advancing understanding of geno-
mics questions ranging from the discovery of genes underlying adaptive evolution to
assessing population parameters and demography using thousands to millions of
neutral markers that are often anonymous or not mapped.

Our main goals for this chapter are fourfold. First, we discuss the research topics
and questions for which genomics tools are most valuable. We illustrate where
genomics methods are improving our ability to address long-standing objectives
and also to address previously intractable questions using conceptually novel
approaches. Second, we give a brief introduction to new molecular techniques and
computational approaches (including bioinformatics workflows and Bayesian
methods) to help biologists understand this growing literature and to plan their
projects. Third, we provide an overview of the emerging disciplines where popula-
tion genomics concepts and approaches are being applied. Finally, we discuss future
perspectives of applications of population genomics concepts and approaches and
conclude the chapter. Throughout, we highlight the opportunities and challenges
associated with population genomic analyses in studies of natural and managed
populations.

Box 1 How is Narrow Sense Population Genomics Different from Broad
Sense Genomics and Traditional Population Genetics?
Defining broad and narrow sense population genomics can be useful because
there is often confusion among students and researchers as to what constitutes
genomics and also because broad sense population genomics studies include
traditional population genetic approaches and the use of more DNA markers
(see Charlesworth 2010; Allendorf 2017). An example of a broad sense
population genomics study would be using thousands or tens of thousands
of anonymous SNPs (Fig. 3) to estimate the inbreeding coefficients of indi-
viduals using traditional parameters (e.g., individual heterozygosity; Hoffman
et al. 2014; Kardos et al. 2016a), while a narrow sense study would be the
mapping of runs of homozygosity (RoH) to infer recent and historical inbreed-
ing (or population bottlenecks) (Bérénos et al. 2015; Howard et al. 2015;
Palkopoulou et al. 2015; Pemberton et al. 2017; Kardos et al. 2017; Ceballos
et al. 2018). The requirement for narrow sense genomics to include “concep-
tual novelty” and to address questions not tractable using traditional popula-
tion genetics addresses the criticism of Charlesworth (2010) and of others
saying that population genomics is nothing new.

(continued)
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Box 1 (continued)
A narrow sense population genomics study precisely characterizes varia-

tion at many specific (mapped) regions of the genome (Allendorf 2017). The
density of markers required (see below) varies and depends on phenomena that
affect gametic disequilibrium along a chromosome such as mating system
(e.g., selfing versus random mating), effective population size, population
subdivision, gene flow or admixture, and recombination rates (Slatkin 2008).

2 When Is Population Genomics Most Valuable?

A wide array of fundamental and novel questions can now be reliably addressed
thanks to developments in population genomics (Table 1). In this section, we
describe several newly invigorated avenues of research in evolutionary biology
and conservation genetics. The most exciting developments of population genomics
involve using novel approaches to address previously unapproachable questions
such as mapping adaptive variation genome wide and resolving the genomic basis
of fitness and phenotypes (Hoban et al. 2016; Hendricks et al. 2018; Hunter et al.

Fig. 3 Illustration of how (A) anonymous (unmapped) loci are often detected to be under
directional selection (e.g., with high allele frequency differentiation, FST) among
populations and how (B) a genetic linkage map or a physical map (genome assembly)
helps to localize the genome regions under selection by positioning loci (SNPs) along a
chromosome or entire genome. In panel B, each color represents a different chromosome
(linkage group) including the different shades of gray. Knowing the genome position of
SNPs allows for multiple, often linked, SNPs to be identified that result from the same
selection process and signature (e.g., high FST), which increases our confidence that the
SNPs or genome region are actually under selection and not false positives. Positional
information also helps understand the number of loci or genome regions that are under
selection. Further, if coding or annotated genes have also been mapped or physically located
on a genome sequence, researchers can identify genes in the region of the selection signature,
which represent candidate adaptive genes (e.g., Mckinney et al. 2016). Figure (A) represents
a broad sense genomics approach, while (B) is narrow sense genomics. Figure modified from
Garret McKinney (pers. comm., 2018)
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Table 1 Questions or objectives that population genomics can help to address and examples of
genomics approaches to address them

Question or objective
Genomics approach
(example)/software References

Identify candidate adaptive
loci by detecting selective
sweeps

Genome scan for low hetero-
zygosity regions

Rubin et al. (2010), Axelsson
et al. (2013), Kardos et al. (2015b)

High differentiation (e.g.,
FST) outlier regions

Rochus et al. (2018)

High gametic disequilibrium Pérez O’Brien et al. (2014)

Shifted site frequency spec-
trum (high-frequency-
derived alleles)

Alachiotis and Pavlidis (2018),
Tajima (1989), Fay and Wu
(2000), DeGiorgio et al. (2016)

Extended haplotype
homozygosity

Sabeti et al. (2002, 2007), Voight
et al. (2006)

Scan for soft selective sweeps
(sweeps of alleles that are
already present on multiple
haplotypes [standing genetic
variation] or of positively
selected alleles at multiple
sites in the same region or
gene)

Hermisson and Pennings (2017),
Marques et al. (2018), Hodel et al.
(2018)

Scan for hard selective
sweeps (sweeps of new
(de novo) positively selected
mutations)

Pennings and Hermisson (2006),
Betts et al. (2018), Kreiner et al.
(2018)

Identify candidate loci
underlying local adaptation
and speciation

See sweeps above (including
FST outliers)

Heritable gene expression
profile differences

Christie et al. (2016)

Parallel evolution of gene
expression

Yeaman et al. (2016)

Parallel phenotypic or DNA
sequence evolution

Prince et al. (2017)

Identify loci associated with
environmental variation
(landscape genomics)

Methods testing for gene-
environment association can
detect subtle signatures of
adaptation that are not
detectable using genome-
wide selection scans

Joost et al. (2007), Coop et al.
(2010), Hancock et al. (2011),
Rellstab et al. (2015), Rajora et al.
(2016), Harrisson et al. (2017),
Rougeux et al. (2018), Schmidt
et al. (2017)

Detect signatures of poly-
genic adaptation

Single vs multiple genes and
the genomic basis of fitness

Berg and Coop (2014), Bourret
et al. (2014), Brieuc et al. (2015),
Laporte et al. (2016), Stölting
et al. (2015), Sork (2016),
Yeaman et al. (2016), Rajora et al.
(2016), Harrisson et al. (2017)

Identify loci underlying
species and landscape inter-
actions (landscape commu-
nity genomics)

Landscape community
genomics

Hand et al. (2015b), De Kort et al.
(2018), Kozakiewicz et al. (2018)

(continued)
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Table 1 (continued)

Question or objective
Genomics approach
(example)/software References

Identify loci associated with
traits within populations

Genome-wide association
analysis

Smith and O’Brien (2005), John-
ston et al. (2011), Johnston et al.
(2013), Barson et al. (2015),
Bérénos et al. (2015), Husby et al.
(2015)

Admixture mapping Lamichhaney et al. (2015)

Quantify inbreeding and
inbreeding depression and
identify underlying loci

Individual heterozygosity;
runs of homozygosity

Hoffman et al. (2014), Bérénos
et al. (2016), Dobrynin et al.
(2015), Hedrick and Garcia-
Dorado (2016), Howard et al.
(2015), Huisman et al. (2016),
Kardos et al. (2017), (2018)

Quantify hybridization,
outbreeding depression,
adaptive introgression, and
associated loci

Runs of hybridity Guan (2014), Gompert (2016),
Leitwein et al. (2018), Jones et al.
(2018)

Selection against
introgression

Kovach et al. (2016)

Estimate effective popula-
tion size (Ne) or Nb

Abundance and lengths of
IBD segments (both within
and between individuals) can
be used to estimate Ne and
historical changes in Ne

Kirin et al. (2010), Pemberton
et al. (2012), Browning and
Browning (2015), Kardos et al.
(2017)

Pairwise sequentially
Markovian coalescent
(estimate deep historical time
series of Ne)

Li and Durbin (2011)

Detect population declines
(reduction of Ne)

BOTTLENECK; ABC ana-
lyses in DIYABC

Cornuet and Luikart (1996),
Hoban et al. (2013), Cammen
et al. (2018)

Estimate contemporary
gene flow rates (Nm)

BayesAss3-SNPs Wilson and Rannala (2003),
Waterhouse et al. (2018), Brauer
et al. (2018)

Distinguishing continuous
migration from strict
isolation

Maximum-likelihood method
based on the jSFS

Gutenkunst et al. (2009), Fraisse
et al. (2018)

Identify adaptively differ-
entiated populations such as
ESUs (evolutionarily sig-
nificant units)

Detecting a major gene
(haplotype) for migration
timing Chinook salmon and
steelhead trout;
multidisciplinary framework
to delineate distinct
populations of butterflies

Prince et al. (2017), Dupuis et al.
(2018)
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2018). Identifying loci underlying adaptive evolution is a long-standing goal in
evolutionary biology, and doing so helps to understand the phenotypic traits,
biochemical pathways, and nature of the selective forces that have resulted in the
bewildering array of biodiversity.

A more common or widespread application of population genomics approaches is
improving estimation of population genetic parameters and evolutionary relation-
ships – including assessments of effective population size, population structure,
phylogeography, and demography – which are largely broad sense genomics
(Luikart et al. 2003). We first discuss these broader sense applications in Sect. 2.1.
We then discuss exciting and previously intractable applications including mapping
of adaptive genomic variation in Sects. 2.2 through 2.8.

2.1 Estimating Population Genetic Parameters
with Genome-Wide Markers: Broad Sense
Genomics Approaches

Genomics approaches can be used to address questions that have long been studied
using traditional molecular markers such as allozymes or microsatellites (Box 1). In
this section, we describe some of those population genetic questions and how
genomics can be used to improve them. While traditional molecular markers provide
information on a small fraction or subset of the genome, large-scale genomic data
(thousands to hundreds of thousands of SNPs) provide a more complete picture of
genetic parameters across the entire genome (e.g., Hohenlohe et al. 2010b; Brelsford
et al. 2017).

Statistical inference can be used to estimate population genetic parameters, such
as genetic diversity, effective population size, population differentiation, or phylo-
genetic relationships, and these population genetic metrics reflect processes that
affect the genome as a whole. However, these metrics can vary tremendously across
the genome, which suggests a narrow sense approach (e.g., mapped loci) is advis-
able. For example, genetic variation and population differentiation often vary tre-
mendously across the genome due to variation in recombination rate, selection
intensity (purifying and positive), and the mutation rate (Hohenlohe et al. 2010b).

The primary advantage of broad sense genomics is providing many more genetic
markers, often by several orders of magnitude, than previous techniques, and often
for similar cost and research effort. This results in the potential for much greater
precision of estimates of population genetic parameters. Many more markers can
also reduce bias of estimates of population genetic parameters by identifying loci
under selection that often should not be used to estimate parameters requiring only
neutral loci, such as gene flow, demographic history, and phylogenies. In some
cases, recent genomics techniques can also be more cost-effective than traditional
techniques, for instance, with the ability to simultaneously detect and genotype loci
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using RADseq and RAD capture (see Sect. 4) in taxa for which microsatellite or
other loci have not previously been developed (Andrews et al. 2016).

In population genomics studies, genome-wide estimates are often considered as
the background against which outliers reflect adaptive or functionally important loci
(Fig. 1; Luikart et al. 2003), and detection of these loci is central to narrow sense
population genomics as described in the sections below (see also Hohenlohe et al.
2018 this volume). The genome-wide background, estimated by either traditional
genetic or genomics techniques, is often interpreted to reflect selectively neutral
processes. But it is important to remember that the effects of selection and genotype-
phenotype relationships are pervasive across the genome due to processes, such as
hitchhiking (Maynard Smith and Haigh 1974), background selection (Charlesworth
et al. 1993), or isolation by adaptation (Nosil et al. 2008; Corbett-Detig et al. 2015).
Whether techniques tend to avoid coding regions (e.g., microsatellites), focus on
them (e.g., exon capture, RAD capture with targets in or near genes), or sample
randomly across the genome (e.g., RADseq), it can be treacherous to interpret
genome-wide patterns as solely reflecting “neutral” processes.

2.1.1 Genetic Variation and Effective Population Size

A central quantity in population genetics is the amount of genetic variation present in
a population. This can be quantified in several ways, including expected heterozy-
gosity (He) or nucleotide diversity (π), which can be estimated from genome-wide
SNP data using many analysis programs, such as PLINK (Purcell et al. 2007).
Genome-wide genetic variation is the result of multiple interacting processes,
including mutation, genetic drift, selection, and population structure, that affect the
genome as a whole.

The amount of genetic variation in a population is closely related to the effective
population size (Ne), which is often a focus of population genomics studies, particu-
larly those relevant to conservation (e.g., Hare et al. 2011; Cammen et al. 2018). While
there are several ways to define Ne, a common definition derives from the amount of
genetic drift in a local population relative to an idealized Wright-Fisher model
(Charlesworth 2009; Allendorf et al. 2013). The most direct way to estimate the rate
of genetic drift and Ne is with temporal genetic samples from a local population, which
provide measurements of changes in allele frequencies over time (Wang 2005; Luikart
et al. 2010). Often, however, multiple samples over time are not available from natural
populations, so other estimation techniques are required.

Random genetic drift due to small population size also leads to nonrandom
associations between alleles from different loci, known as gametic disequilibrium
(GD). GD provides the basis for methods to estimate Ne from a single genetic sample
collected at one time point, such as program LDNe in NeEstimator. LDNe requires
independent loci such as those on different chromosomes (Do et al. 2014). With the
large number of markers available from genomic data, it is likely that physically
linked loci (those on the same chromosome) are included. Physically linked loci can
downwardly bias estimates of Ne by increasing GD (Waples and Do 2010). If
markers can be mapped to a reference genome assembly or linkage map, one locus
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in physically linked pairs of loci can be removed (e.g., as done by Larson et al.
(2017)) or a general correction for the number of chromosomes can be applied
(Waples et al. 2016). An alternative class of methods uses coalescent-based infer-
ence of Ne; Nunziata and Weisrock (2018) found that GD methods require more
individuals (e.g., n > 30), while coalescent methods require fewer individuals (e.g.,
n ¼ 15) but more SNP markers (25,000–50,000). Estimates of Ne from different
methods can vary, and knowledge of population demography or temporal data can
improve estimates considerably (Gilbert and Whitlock 2015).

2.1.2 Population Structure and Phylogeography

Populations exist across space, and the spatial distribution of genetic variation is an
important focus of population genetics. Quantifying population structure and levels
of genetic differentiation among populations (e.g., estimating the parameter FST) has
been tractable with traditional population genetic tools, but again genomic tech-
niques provide greater statistical power and precision for estimating parameters
(Hohenlohe et al. 2018 in this volume). Furthermore, the number of markers from
genomic data can allow for estimates from fewer individual samples; for instance,
Nazareno et al. (2017) report consistent estimates of FST when using as few as two
individuals, genotyped at over 1,500 SNPs.

Many analytical tools are well-suited for assessing and visualizing population
structure from large genomic SNP datasets, such as principal components analysis
and Bayesian clustering methods, and applying multiple techniques to a single
dataset can help reveal important patterns (Fig. 4). When applied to genome-wide
data, these approaches illustrate the results of processes that affect the genome as a
whole, such as population size and migration rates. In a landscape genetics frame-
work, a combination of genomic and landscape data can identify landscape features
associated with variation in dispersal patterns (see Johnson et al. 2018a, b in this
volume for a review). Interpolating and mapping genetic similarity across landscapes
can reveal areas of high versus low gene flow, e.g., using the estimated effective
migration surface (EEMS) approach of Petkova et al. (2016). Recent genomics
techniques also provide new power for understanding the relationship between
landscape variables and functional genetic variation at specific loci, such as genes;
Balkenhol et al. (2017) in this volume review this field of landscape genomics.

2.1.3 Demographic History

A goal of population genomics studies that was considerably less tractable with
traditional genetic techniques is a detailed reconstruction of historical demographic
patterns, including changes in effective population size and migration rates, using
genetic data sampled only from the contemporary populations. A number of tech-
niques have been developed for demographic reconstruction from genetic or geno-
mic data, such as approximate Bayesian computation (ABC; Boitard et al. 2016;
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Fig. 4 Two methods for visualizing patterns of genetic differentiation among populations or
closely related taxa: (a) principal components analysis and (b) Bayesian clustering analysis. Here
these methods are applied to data from a 48,000 SNP genotyping array from wolves and their
relatives. Reproduced with permission from VonHoldt et al. (2011)
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Elleouet and Aitken 2018), sequential Markovian coalescent methods (Terhorst
et al. 2017), and site frequency spectrum methods (Gutenkunst et al. 2009). See
Salmona et al. (2017) in this volume as well as Beichman et al. (2017) for detailed
reviews.

As an example, Duranton et al. (2018) estimated the parameters of a demographic
model of two populations of European sea bass (Dicentrarchus labrax). Using
genomic data mapped to a reference genome, the authors were able to characterize
the distribution of lengths of haplotypes and fit model parameters to the observations
(Fig. 5). Specifically, they identified tracts of migrant ancestry using the program
ChromoPainter (Lawson et al. 2012) and estimated admixture parameters, and
they used the method of Harris and Nielsen (2013) to infer demographic history
from tracts of identity by state. These results reconstruct the historical details of
population isolation and secondary gene flow between Atlantic and Mediterranean
populations. This is a narrow sense genomics study because high-density mapped
markers are used with a conceptually novel approach (haplotype tracts of immigrant
ancestry).

Fig. 5 Mapped genomic markers provide information on haplotype lengths, which are informative
to assess historic admixture processes. Here the observed distributions of haplotype tract lengths in
Atlantic and Mediterranean populations of European sea bass (Dicentrarchus labrax) (red and
yellow dots) closely match simulated distributions (dark and light gray dots), allowing estimation of
parameters in a model of historic isolation followed by secondary contact and gene flow. The
haplotype information and modeling allows estimation of timing, directionality, and amount of gene
flow. Reproduced with permission from Duranton et al. (2018)
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2.1.4 Phylogenomics

Phylogenetic relationships among taxa can be estimated from a wide range of
genetic data types, including genomic data. A complication is that many genetic
markers spread across the genome may reflect different evolutionary histories
because of recombination, particularly in recently diverged species and where
incomplete lineage sorting and admixture play important roles (Edwards et al.
2016). Methods accounting for this, for instance, in estimating phylogeny from
large SNP datasets, have been developed (Hohenlohe et al. 2018 this volume;
McKain et al. 2018). Ideally, phylogenomic datasets are used not only to estimate
a consensus tree among taxa but also to reveal patterns of hybridization and
admixture (e.g., using analyses that allow for specific admixture events, such as
TreeMix; Pickrell and Pritchard 2012).

2.2 Identifying Adaptive Genetic Variation Underlying
Selective Sweeps

Population genomics makes it possible to identify “footprints” of natural selection in
genome-wide patterns of genetic variation. The classical genomic signature of
positive selection is the hard selective sweep, where fixation of a positively selected
de novo mutation dramatically reduces genetic diversity at closely linked loci in a
process referred to as genetic hitchhiking (Maynard Smith and Haigh 1974). The size
of the region of reduced variation around the positively selected allele depends
mainly on the strength of selection (and thus how quickly the sweep progressed)
and the recombination rates on either side of the selected site (Jensen et al. 2016).

Hard selective sweeps are characterized by very low nucleotide diversity, and
polymorphisms subsequently arising within a swept region display an excess of low-
frequency-derived alleles compared to the genome-wide background. Thus, methods
used to identify classical selective sweeps generally scan the genome for regions
with low diversity (Maynard Smith and Haigh 1974), an excess of rare alleles
(Tajima 1989), and a shifted site frequency spectrum (SFS) toward relatively high-
frequency-derived alleles (DeGiorgio et al. 2016; Fay and Wu 2000; Huber et al.
2015; Kim and Stephan 2002).

While classical hard selective sweeps strongly reduce genetic variation around
the selected site, soft selective sweeps arise from positive selection on standing
genetic variation and leave a subtler genomic signature (Hermisson and Pennings
2005). In particular, soft sweeps usually do not strongly reduce genetic variation or
result in a large shift in the site frequency spectrum around the selected site because
the positively selected allele is present within multiple flanking haplotypes
(Pennings and Hermisson 2006; Teshima et al. 2006). Soft sweeps appear to be a
dominant mechanism of recent adaptation in humans (McCoy and Akey 2017;
Schrider and Kern 2017). Methods based on extended haplotype homozygosity,
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which look for derived alleles sitting on exceptionally long haplotypes, are thought
to have substantially higher power to detect soft selective sweeps than diversity- or
site frequency spectrum-based genome scans (Ferrer-Admetlla et al. 2014; Voight
et al. 2006). Machine learning appears to also be a powerful method to detect soft
sweeps (Schrider and Kern 2017).

Recent studies have detected putative selective sweeps in an array of organisms,
ranging from domesticated livestock and humans to natural populations of
non-model species. In some cases, these studies have helped to identify the pheno-
types and underlying genetic and biochemical pathways involved with the response
to positive selection. Recent studies using genome scans based on genome
resequencing data have identified putative selective sweeps underlying adaptation
to domestication in pigs (Sus scrofa; Rubin et al. 2012), dogs (Canis lupus
familiaris; Axelsson et al. 2013), chickens (Gallus gallus; Rubin et al. 2010), and
rabbits (Oryctolagus cuniculus; Carneiro et al. 2014).

Schweizer et al. (2016) identified putative selective sweeps in North American
gray wolves (Canis lupus) related to coat color and environmental conditions by
conducting genome scans via resequencing of exons and intergenic sequences.
Kardos et al. (2015b) identified a putative selective sweep in wild bighorn sheep
(Ovis canadensis) in the vicinity of the RXFP2 gene associated with horn growth in
domestic sheep (RXFP2). Their results suggested that horn morphology (or size) in
bighorn sheep evolved at least in part via positive selection on a beneficial variant at
RXFP2. See the chapter herein by Hohenlohe et al. (2018) for additional examples of
selective sweeps and also Marques et al. (2018), Stetter et al. (2018), and Sugden
et al. (2018).

2.3 Genetic Architecture Underlying Adaptive Differentiation

Positive selection acting differently among populations can result in exceptionally
strong genetic differentiation in genomic regions containing loci subjected to selec-
tion (Lewontin and Krakauer 1973). For example, alleles conferring adaptation to
high elevation in humans tend to be at high frequency in high-elevation populations
but at low frequency in low-elevation populations in humans (e.g., Lorenzo et al.
2014; Hackinger et al. 2016). Genomic signatures of local adaptation can be detected
by scanning a large number of densely mapped loci to detect genes or chromosome
regions with exceptionally high genetic differentiation (e.g., FST outliers) among
populations (Hohenlohe et al. 2010b; Paris et al. 2017). Small numbers (100s) of
unmapped loci can be tested for adaptive signatures (broad sense genomics), partic-
ularly if candidate loci have been identified a priori (e.g., Holliday et al. 2010, 2012),
but if adaptation is highly polygenic, some of the causal loci will likely be missed.

Many studies have analyzed large numbers of mapped SNPs to detect FST outlier
chromosomal regions that represent candidate genomic regions for local adaptation
(Hohenlohe et al. 2010b; Wang et al. 2016). Gene-environment association (GEA)
analyses are also used to identify outlier loci associated with environmental
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differences (Sect. 2.4; Figs. 3 and 5). Genomic regions displaying exceptionally high
genetic differentiation between incipient species can also help to localize loci
subjected to divergent selection during speciation (Burri et al. 2015; Ellegren et al.
2012; Harr 2006; Marques et al. 2016; Martin et al. 2013; Poelstra et al. 2014;
Renaut et al. 2013; Turner et al. 2005; Wolf and Ellegren 2017).

Problems with FST outlier tests, and related tests for differentiation, include the
use of the wrong null model resulting in false positives. For example, hierarchical
population genetic structure can cause higher variance in FST (e.g., higher FST’s)
than expected assuming a simpler model of population structure. The problem can be
assessed and dealt with using simulations to simulate null distributions of FST (for
1,000s of neutral loci) for a hierarchical population structure (e.g., Lotterhos and
Whitlock 2014). False negatives are another problem, which can also be caused by
using the wrong or suboptimal spatial model. For example, to avoid many false
negatives and increase power to detect selection, Foll et al. (2010) developed a
hierarchical Bayesian to improve detection of genes involved in adaptation by
humans to living at high altitude and hypoxia.

To avoid false negatives, researchers should use high SNP densities because
variation in FST among SNPs is high even within a strongly selected gene. For
example, SNP alleles from the lactose tolerance gene have been under strong
positive selection in humans in Northern Europe (Beja-Pereira et al. 2003; Tishkoff
et al. 2007). However, only 15 of 61 SNPs across the gene show significantly high
FST (>0.45) between Europeans and other populations (Fig. 6). This suggests that
many SNP genotyping strategies (e.g., SNP chips, restriction site-associated DNA
sequencing, targeted sequencing) will often have too few SNPs per gene region to
reliably detect molecular signatures of adaptive genetic differentiation and perhaps
other selection signatures as well (Luikart et al. 2003).

Fig. 6 FST for individual SNPs (dots) randomly sampled from across each of the two genes
(CLASP1 and LCT, human chromosome #2) having the highest proportion of SNPs with FST

above 0.45 between the Yorubans in Africa and Utahans representing North Western Europeans.
AGFG1 is a typical gene without apparent selection signatures. CLASP1 and LCT are under strong
directional selection. An FST value of 0.45 is approximately the upper 99.9 percentile of empirically
observed SNP FST values across the genome and above which few neutral SNPs are expected. The
x-axis represents a randomly chosen SNP (for instance, under random sampling with replacement).
Unpublished manuscript by T. Antao and Luikart
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2.4 Landscape Genomics

Landscape genomics is an emerging field or approach that strives to identify
environmental factors that shape neutral and especially adaptive variation and the
genes and their variants that underlie local adaptation (Rellstab et al. 2015;
Balkenhol et al. 2017 this book). Environmental conditions vary across time and
space, and local conditions can cause fitness differences among individuals that vary
for phenotypic traits on which natural selection can act (Blanquart et al. 2013; Hoban
et al. 2016). These differences in traits can be associated with underlying genotypic
differences and with environmental conditions. Thus landscape genomics methods
test for associations among environmental factors, geo-spatial location, or pheno-
typic traits and genomic variation. Landscape genomics studies focus on local
adaptation to environmental conditions within and among different geographic
locations (Rellstab et al. 2015; Hoban et al. 2016). The topic of landscape genomics
is discussed in detail in the chapter by Balkenhol et al. (2017) in this book.

Genetic differentiation (e.g., FST) outlier tests alone do not identify the environ-
mental factors or selective pressures driving local adaptation. However, genotype-
environment association (GEA) analyses can identify loci associated with specific
environmental factors driving local adaptation. Simulation-based studies have
found that, in general, GEAs have more power than outlier-based approaches but
higher rates (20–50%) of false positives (De Mita et al. 2013; Frichot et al. 2013;
Forester et al. 2016). Examples of GEA-based programs are Bayenv2 (Gunther and
Coop 2013) that adjusts for population structure using an independent set of markers
that are assumed a priori to be neutral and the latent factors mixed model (LFMM,
Frichot et al. 2013) approach that uses the covariance structure of all loci being tested
to adjust for population history and demographics. There are a large number of tests
and software packages available for detecting differentiation outliers and GEAs, and
the number of publications using them has grown rapidly, especially for BayeScan,
Bayesenv, and LFMM (Ahrens et al. 2018).

Lotterhos and Whitlock (2014) used simulations to show that reliable genetic
differentiation test results vary depending on the number of individuals sampled.
Their review suggests that FST outlier tests will detect a higher proportion of outliers
as more individuals are sampled. This bias did not occur for GEA where the
proportion of associations remained relatively constant as the total number of
individuals increased. This finding implies that GEAs are more robust (see also
Ahrens et al. 2018).

One recent use of multiple GEA approaches identified a congruent set of candi-
date genes (among approaches) that are potentially important in the local adaptation
of Mediterranean striped red mullet (Mullus surmuletus) populations to their saline
environment (Dalongeville et al. 2018). Brauer et al. (2018) used GEA analysis to
test for adaptive divergence in the Murray river rainbowfish (Melanotaenia
fluviatilis) genome associated with hydroclimate. Brauer et al. (2018) used 17,504
SNPs in a multivariate GEA framework accounting for structure of a river system to
identify 146 candidate loci potentially underlying polygenic adaptive responses to
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seasonal fluctuations in stream flow and periods of extreme temperature and
precipitation.

Adjusting or accounting for neutral population structure is necessary to avoid a
high rate of false positives with GEA analyses. However, such adjustments can
result in false negatives if environmental factors driving local adaptation are corre-
lated with population structure (e.g., from patterns of post-glacial recolonization).
Yeaman et al. (2016) addressed this problem using a comparative genomics
approach by identifying GEA candidate loci correlated with variation in low tem-
peratures from exome capture and resequencing data based on raw GEA correlations
in one conifer species (Pinus contorta). They then looked for significant GEA in
those candidate loci in a second species complex (Picea glauca, P. engelmannii, and
their hybrids) and vice versa. They also identified shared loci associated with
phenotypic variation in cold hardiness. In this way, they identified 47 loci underlying
local adaptation to cold in populations of both conifers. For additional examples
involving gene expression and epigenetics, see below.

2.4.1 Spatial Signatures of Polygenic Adaptation

Adaptive traits are often polygenic and controlled by a large number of alleles from
many loci each having small phenotypic effect (Bourret et al. 2014; Laporte et al.
2016; Stölting et al. 2015; Sork 2016; Yeaman et al. 2016; Boyle et al. 2017).
However, methods for detecting adaptive genetic variation often only have the
power to detect loci and alleles with large phenotypic effects (Wellenreuther and
Hansson 2016). GEA methods can potentially detect weak signatures of adaptation
but still might seldom detect alleles with small effect sizes (Coop et al. 2010; Joost
et al. 2007).

Many of the early gene-environment association (GEA) methods tested only a
single locus at a time, rather than looking at the combined effects of multiple loci
simultaneously (Rellstab et al. 2015). More recent work has suggested that multi-
variate approaches (e.g., redundancy analysis (RDA), canonical correlation analysis
(CCA), or using a population graph approach) might help reduce the number of false
positives and maintain reasonable power to detect associations under even condi-
tions of weak, multilocus selection (Rajora et al. 2016; Forester et al. 2018).
However, multivariate approaches remain seldom used in population genomics
literature (Rajora et al. 2016; Wellenreuther and Hansson 2016).

A recent study tested for polygenic signatures of local adaptation using multivar-
iate approaches and 6605 RADseq SNPs in an Australian endemic fish, Murray cod
(Maccullochella peelii) (Harrisson et al. 2017). The polygenic multivariate method
(redundancy analysis, RDA) supported comparable roles of climate (temperature-
and precipitation-related variables) and geography in shaping the distribution of
multiple SNP genotypes across the range of Murray cod. Among the candidate SNPs
identified by these multivariate and the univariate methods, the top 5% of SNPs
contributing to significant RDA axes included 67% of the SNPs identified by
univariate methods. The results highlight the value of using a combination of
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different approaches, including polygenic methods, when looking for signatures of
local adaptation in landscape genomics studies.

2.4.2 Landscape Community Genomics: Identifying Loci Underlying
Both Species and Landscape Interactions

Genomic variation is influenced by complex interactions between abiotic (e.g.,
environmental) and biotic (e.g., community) effects. Researchers should consider
the effects of both environmental and community factors on evolutionary dynamics
simultaneously to avoid potentially incomplete, spurious, or erroneous conclusions
about the mechanisms driving patterns of genomic variation among and within
populations. Any study of genomic variation and adaptation in nature would ideally
begin with a set of predicted abiotic and biotic drivers, including interactions
between these two fundamental categories of effects (Hand et al. 2015b). Despite
the value of studying concordant patterns of genetic variation in interacting species,
there are relatively few empirical examples, in part because of the expense of
conducting population genomics on multiple interacting species across heteroge-
neous landscapes or environmental gradients. Few examples exist but will become
more common as it becomes feasible to conduct landscape genomics on multiple
interacting species (e.g., see Beja-Pereira et al. 2003).

One recent example of landscape community genomics is a study of the parasitic
Alcon blue butterfly (Phengaris alcon) and its two hosts: an ant species (Myrmica
scabrinodis) and the marsh gentian (Gentiana pneumonanthe) (De Kort et al. 2018).
The female butterfly lays its eggs onto gentian flower buds which develop into
caterpillars at the expense of the gentian’s ovules. This has led to coevolutionary
shifts in flowering phenology to escape peak times of infestation by the Alcon
butterflies (Valdés and Ehrlén 2017). When the caterpillars leave the plant, they
are adopted byMyrmica ants as the caterpillar’s chemical signature misleads the ants
into accepting and rearing the caterpillar in preference to their own brood. This social
parasitism of ants has also lead to coevolutionary changes in the surface chemistry of
Myrmica and in the Alcon butterfly larvae (Nash et al. 2008). De Kort et al. (2018)
focused on the impact of habitat fragmentation on the Alcon butterfly and subse-
quently the possible effect on its two obligatory host species (ants and gentians).
Some of the among-population genetic variation in the host species could be
explained by abiotic variables (e.g., altitude). Additional analyses showed a sub-
stantial amount of variation in Alcon butterfly genetic structure could be explained
by host genetic structure. De Kort et al. (2018) then suggested that coevolutionary
selection has been important in synchronizing genetic structure of this host-parasite
system. Habitat fragmentation is impacting the Alcon butterfly (Phengaris rebeli)
and will likely impact the genetic structure of its host species as well.
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2.5 Genome-Wide Association Studies: Loci Associated
with Traits Within Populations

A growing number of population genomics studies have identified loci contributing
to phenotypic variation among individuals, including in traits that strongly affect
fitness and local adaptation, via genome-wide association studies (GWAS). GWAS
typically use a regression model (e.g., a linear mixed-effects [LME] model) to
identify loci where genotypes are associated with a trait of interest (Gibson 2018).
Population structure is accounted for by fitting a genomic-relatedness matrix (GRM)
as a random effect; other potentially informative predictor variables can be included
as needed in the random or fixed effects parts of the model. Additional discussions of
GWAS and heritability estimation, with emphasis on functional genomics, is pro-
vided in the chapter by Pino Del Carpio et al. (2018) in this book (see also Santure
and Garant 2018; Armstrong et al. 2018).

The number of studies finding loci associated with variation in fitness-related
traits in natural populations is proliferating. Trait-associated loci are often identified
in regions that show strong genetic differentiation between individuals with stark
differences in morphology. For example, SNPs around the RXFP2 gene included on
a 50K SNP array were found to be associated with horn morphology in wild feral
Soay sheep (Ovis aries) (Johnston et al. 2011, 2013). Horn morphology strongly
affects fitness in Soay sheep (Ovis aries) and in natural populations of wild mountain
sheep (e.g., bighorn sheep, Ovis canadensis; Hogg 1984). Thus identifying loci
associated with horn size provides an interesting look into the genetic basis of
fitness-related variation.

In another recent GWAS example, Brelsford et al. (2017) studied a natural hybrid
zone between Audubon’s and myrtle warblers (Setophaga coronata auduboni x S. c.
coronata) to identify genomic regions associated with color pigmentation potentially
associated with mating success and fitness. RADseq produced 154,683 to 393,755
SNPs, depending on the filtering criteria. For each of five plumage coloration traits
studied (eye spot, throat color, eye line, wing bar, and auricular), the authors detected
highly significant associations with multiple SNPs genome wide that clustered into
chromosomal regions (Fig. 7). The high success in identifying loci associated with
these traits likely resulted from the relatively high gametic disequilibrium along
chromosomal stretches resulting from hybridization.

In another study, Husby et al. (2015) identified a locus that was associated with
clutch size (a life history trait) in the collared flycatcher (Ficedula albicollis). Simi-
larly, Bérénos et al. (2015) identified two SNPs in Soay sheep (Ovis aries) associated
with leg length (a measure of body size), with each of the two SNPs explaining>10%
of the additive genetic variance in the trait. One of the SNPs found to be associated
with leg length by Bérénos et al. (2015) was also associated with female reproductive
success, providing evidence for a link between genotype, phenotype, and fitness in
Soay sheep. Lamichhaney et al. (2015) and Küpper et al. (2015) simultaneously
identified a large (~4.5 Mb) inversion that controlled mating morphology in the ruff
(Philomachus pugnax). Barson et al. (2015) identified a locus with sex-specific
dominance and large effects on age at maturation in wild Atlantic salmon.
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GWAS methods are also being widely used in conjunction with common garden
experiments containing natural or seminatural populations of plants, fish, and other
taxa. For example, in black cottonwood (Populus trichocarpa), Mckown et al.
(2014) conducted GWAS using 29,355 filtered SNPs using a unified mixed model
accounting for population structure effects. They uncovered 410 significant SNPs
(from 275 genes) across 19 chromosomes that explained 1–13% of trait variation in
trait associations, mostly associations with phenology genes (240 genes) but also
biomass (53 genes) and ecophysiology (25 genes).

In the future, association studies will continually find more loci, including loci of
small effects associated with adaptive traits, thanks to improved power from
sequencing strategies like pool-seq with a reference genome that allow high-density

Fig. 7 Manhattan plots of genomic differentiation (A) and plumage associations (B,C,D). (A) FST

between allopatric myrtle and Audubon’s warblers at 393,755 SNPs across the genome with
scaffolds ordered by size. Adjacent scaffolds across the genomes are distinguished by alternating
gray or black coloration. Panels B, C, and D are phenotype-genotype associations for three of the
five plumage characters studied. The tiny red triangle near the top right of panel (B) shows the
cluster of loci that aligns to the zebra finch chromosome 15. This region includes the SCARF2 gene,
which is a strong candidate gene for carotenoid pigment transport. Panel (E) shows patterns of
divergence and genotype-phenotype associations for eye line (blue points) and eye spot (red points)
for a region of chromosome 20. Associations between these two traits are highly correlated with
each other as well as patterns of divergence (FST, small black dots). Coding regions (exons) for
genes are shown by the vertical bars, with different adjacent genes colored differently with
arbitrarily chosen colors. Modified from Brelsford et al. (2017)
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genotyping of populations or lineages (Haussler et al. 2009; Schlötterer et al. 2014;
Wessinger et al. 2018; Pruisscher et al. 2018). For example, Narum et al. (2018) used
a new genome assembly (2.8 Gb) and pool-seq resequencing for Chinook salmon
(Oncorhynchus tshawytscha) to conduct association mapping of important life
history traits. The authors pooled individuals from populations of each of
three phylogenetic lineages that exhibit different maturation and run-timing
phenotypes. Their whole-genome resequencing of pooled (barcoded) individuals
suggested that divergent selection was extensive at many loci genome wide within
and among phylogenetic lineages. Association mapping with millions of SNPs
revealed a genomic region of major effect associated with phenotypes for migration
timing. This study illustrates how a genome assembly and high-density markers can
help resolve the genetic basis of important phenotypes.

2.6 Quantifying Inbreeding, Inbreeding Depression,
and Historical Bottlenecks

The availability of population genomic data is improving our understanding of
inbreeding (mating between relatives) and inbreeding depression in the wild
(Hedrick and Garcia-Dorado 2016; Kardos et al. 2016a). Inbreeding causes offspring
to be homozygous and “identical by descent” (IBD) across large chromosomal
segments where the two inherited DNA copies arise from a single DNA copy in a
common ancestor of the parents (Kardos et al. 2016a; Speed and Balding 2015;
Thompson 2013). The increased homozygosity arising from IBD causes inbreeding
depression: reduced fitness of inbred individuals (Charlesworth and Willis 2009).

The pedigree inbreeding coefficient (FP) is a traditional measure of individual
inbreeding and predicts the fraction of the genome that is IBD, assuming that
pedigree founders are unrelated and noninbred (Keller and Waller 2002; Malécot
1970; Wright 1922). However, FP can be an imprecise measure of the realized
fraction of the genome that is IBD (F) due pedigree errors, the stochastic nature of
Mendelian segregation and recombination, and the presence of related and inbred
pedigree founders (Fisher 1965; Franklin 1977; Stam 1980; Kardos et al. 2016a;
Knief et al. 2017; Forstmeier et al. 2012; Goudet et al. 2018). The imprecision of FP

and the recent availability of genomic data have led to increased application of
genomic estimates of individual inbreeding and inbreeding depression (Hoffman
et al. 2014; Huisman et al. 2016; Bérénos et al. 2016).

Genomic measures of individual inbreeding have the advantage that they directly
measure patterns of homozygosity across the genome, thus making pedigrees
unnecessary to estimate individual inbreeding. Encouragingly, only a few thousand
unmapped SNP loci can provide more precise estimates of F (IBD) than a pedigree
five to ten generations deep (Kardos et al. 2015a, 2018). Even more powerful, the
analysis of many tens of thousands of mapped loci allows the use of runs of
homozygosity (ROH) residing within chromosomal segments that are IBD to assess
inbreeding (IBD) with very high precision (Kardos et al. 2015a). Genomics studies
of inbreeding are greatly advancing our understanding of the extent of inbreeding
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depression in humans, domestic animals and plants, and natural populations of
non-model organisms (Palkopoulou et al. 2015; Xue et al. 2015; Kardos et al. 2018).

ROH can be used to identify and map loci contributing to inbreeding depression
by testing for associations between the presence of ROH and individual fitness-
related traits (Keller et al. 2012; Kijas 2013; Lander and Botstein 1987; Pryce et al.
2014). Large-scale genomics studies of inbreeding depression (sample sizes
>100,000 individuals) based on ROH and other genomic measures of inbreeding
are now being done to precisely estimate inbreeding effects on a wide range of
human traits (Wessinger et al. 2018; Johnson et al. 2018a, b). Thus, population
genomics is beginning to contribute substantially to our understanding of the
evolution of fitness-related phenotypes and the genetic basis of inbreeding depres-
sion in many species. This understanding has the potential to guide conservation and
management of wild population and captive breeding programs, for example, to
avoid inbreeding depression and invoke genetic rescue through restoring gene flow
(Tallmon et al. 2004; Whiteley et al. 2015).

In another step to identify contributing loci, exons identified by ROH can also be
used to bioinformatically identify likely deleterious alleles based on the likely effects
of amino acid substitutions and whether such substitutions are common in homol-
ogous genes in other organisms using software such as PROVEAN (Choi and Chan
2015). The frequencies of these alleles can be compared among individuals and
populations. For example, Conte et al. (2017) found over 13% of all SNP alleles in
Picea engelmannii, P. glauca, and hybrid populations had amino acid substitutions
predicted to be deleterious, but homozygous genotypes for deleterious alleles were
less frequent in hybrid populations due to complementation.

Historical effective population size can be qualitatively inferred from the abun-
dance and length distribution of runs of homozygosity (Fig. 8). For example,
analyses of genome-wide runs of homozygosity (ROH) showed inbreeding arising
from recent common ancestors of parents (due to small population size) in individ-
uals of recently reintroduced populations of alpine ibex (Capra ibex). The detected
ROH were associated with small population size during captive breeding and the
founding of small wild populations approximately 20 generations ago. In spite of a
rapid population growth in the wild, the ibex carried a genomic signature of their
small recent historical population size (Fig. 8). The authors thus suggested that
genomic monitoring for ROH could provide an improved indicator for early detec-
tion of inbreeding in wild and managed populations (Grossen et al. 2018).

Historical population bottlenecks can also be inferred and approximately dated
using ROH and coalescent modeling (Ceballos et al. 2018). Palkopoulou et al.
(2015) sequenced genomes from two wooly mammoths from distant populations
in terms of both geography (northeastern Siberia versus Wrangel Island, Alaska) and
time (~44,800 versus ~4,300 YBP). Intriguingly, both yielded very similar genomic
signatures of a nearly identical population decline at the start of the Holocene. One
mammoth individual sample was dated to have died just before the species’ went
extinct approximately 4,000 years ago. From coalescent modeling, a second geno-
mic signature of a reduced population effective size (and inbreeding) was inferred
just before the extinction at the start of the Holocene. The analyses suggested that the
wooly mammoth was subject to reduced genetic variation prior to its extinction.
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Fig. 8 (A) Schematic showing runs of homozygosity (ROH) along a chromosome. (B) Distribution
of total genome-wide runs of homozygosity in one representative individual from each of three
species including domestic goat (SGB A10), Iberian ibex (Z23), and Alpine ibex (VS0034). The
distribution is right-shifted to have longer ROH, >10–20 Mb, in the reintroduced Alpine ibex. (C)
Tract length distribution of ROH in wild and reintroduced populations. ROH for individuals from
different populations show a range of different tract lengths. Only the reintroduced (captive bred,
bottlenecked) individuals have 20 Mb tracts. The wild source population GP (Gran Paradiso) never
suffered the captive breeding founder effects, but it did decline to ~100 individuals approximately
100 years ago. Black-outlined circles show the three primary reintroduced populations Albris
(orange), Pleureur (light blue), and Brienzer Rothorn (green). Secondary reintroductions established
from the primary reintroduced populations share the same color. Populations with mixed ancestry
are shown in purple. N, sample size per population. Reproduced with permission from Grossen et al.
(2018)



2.7 Delineating Adaptively Differentiated Populations

Population genomics can help identify locally adapted, differentiated populations
that are difficult to delineate using selectively neutral markers, especially in high
gene flow species, such as forest trees and marine organisms. Prince et al. (2017)
used RADseq to assess the evolutionary basis of premature migration among
individuals within local populations of Pacific salmonids. Chinook salmon and
also steelhead trout exhibit two major migration strategies: premature migrators
enter freshwater in the spring with high fat content and stay in freshwater for months
until spawning, and mature migrators which enter freshwater sexually mature just
prior to the spawn. Gene flow was relatively high between the two very different
forms (premature vs normal migration) within a stream (FST ~ 0.03); FST between
streams was far higher (FST ~ 0.13). The authors found the same single locus
associated with premature migration in multiple populations in each of two different
species, Chinook salmon and also steelhead trout.

Results from this study suggest conservation implications. While many traits
involved in local adaptation are polygenic, in this case a single locus appears to
control migration timing and has significant economic, ecological, and cultural
importance (Fig. 9). In particular, extirpation of the premature migration allele and
phenotype are unlikely to re-evolve once extirpated from a population in the absence
of immigrants carrying the allele from elsewhere. Mutations producing a given
important allele are rare evolutionarily, suggesting such alleles will not re-evolve
quickly or easily if lost. Furthermore, spatial patterns of adaptive allelic variation can
differ from patterns of overall population genetic differentiation. Taken together,
these results suggest that conservation units based on genome-wide patterns of
genetic differentiation will sometimes fail to protect evolutionarily significant
genetic and phenotypic variation.

Adaptively differentiated populations can be identified and prioritized for con-
servation and breeding (Funk et al. 2012). Population genomics and landscape
genomics approaches are often necessary to identify adaptively differentiated
populations because common garden or reciprocal transplant experiments are not
feasible for many species. Bonin et al. (2007) devised a population adaptive index
(PAI), which uses both neutral and adaptive distinctiveness to assess the adaptive
value of the population. They suggested that outlier tests could help identify adaptive
loci and alleles to then use to identify and prioritize or rank populations for
conservation values. In species to which they applied the index (PAI), the neutral
and adaptive marker variation among populations were not correlated; Therefore the
authors concluded that conservation strategies based on the neutral and adaptive
indexes would not protect the same populations.

Other authors have suggested genomics approaches be used to identify adaptively
differentiated populations (Funk et al. 2018; Razgour et al. 2018; Hoban 2018).
Approaches include genotype-environment associations and gene expression anal-
ysis (e.g., Hansen 2010; Chen et al. 2018, see Sects. 2.4 and 4.4). Including
environmental variables improves power over differentiation-based methods, helps
identify the environmental drivers of adaptation, and facilitates detection of
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contemporary (and historical) selection (Forester et al. 2018). Ideally, multiple
independent data types would be combined to maximize power and reliability of
delineating adaptively differentiated populations (geography, environment, behav-
ior, ecology, physiology, transcriptomics, and genomics; Allendorf et al. 2013).

There is enormous risk of prioritizing populations for conservation based on
population genomics (or outlier) approaches alone. It can be extremely difficult or

Fig. 9 Genomic basis of premature migration in steelhead. (A) Map of sampling locations of early
versus mature (normal) migration types of steelhead trout sampled together in each of many drainages.
(B) Association mapping of early vs normal migration of the Eel River steelhead trout with gene
annotation, with the (C) gene annotation of a region with strong association; red numbers show
genomic locations of the two RAD restriction sites with strongest associated SNPs, and blue asterisks
indicate positions of amplicon sequencing, with the candidate gene GREB1L. (D) Phylogenetic tree
depicting maximum parsimony of phased amplicon sequences from all individuals; branch lengths,
with the exception of terminal tips, reflect nucleotide differences between haplotypes; numbers
identify individuals with one haplotype in each migration category clade (i.e., heterozygotes for
premature and normal migration haplotypes). Reproduced with permission from Prince et al. (2017)
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impossible to verify whether genes that behave as outliers are genuinely adaptive. The
genomic signatures expected from local adaptation (e.g., FST outliers, GEA) can arise
from genetic drift, particularly when small populations and low migration rates are
involved. Further, genuine genomic signatures of selection may be due to selective
forces in deep history that have since disappeared and thus are irrelevant to adaptation
in current or future environments. Third, prioritizing certain populations based on
certain particular alleles (even if they are genuinely relevant to adaptation) could
actually reduce diversity across the rest of the genome that is necessary for future
adaptation (Luikart et al. 2003; Allendorf 2017; Kardos and Shafer 2018).

2.8 Speciation, Hybrid Zones, Admixture, and Adaptive
Introgression

Population genomics approaches have opened new avenues to study speciation,
admixture events, and hybrid zones in all organisms. A detailed account of this
topic is presented by Nadeau and Kawakami (2018) in this book. Here we introduce
the topic and provide a few relevant examples.

The European bison (Bison bonasus), Europe’s largest land mammal, was
recently shown to be a hybrid of two previously recognized subspecies, by authors
using low coverage genome sequence alignments of historical and modern individ-
uals (Wecek et al. 2017). Admixture occurred between subspecies prior to extinction
in the wild and also subsequently during recent captive breeding. Admixture with
domestic cattle was also significant but was ancient rather than from recent hybrid-
ization with domestics. These discoveries would have been difficult or impossible
without genome-wide mapped loci and both historical and modern samples.

Kovach et al. (2016) studied genome-wide patterns of admixture and natural
selection across recently formed hybrid zones between native cutthroat trout and
invasive rainbow trout (Oncorhynchus clarki lewisi and O. mykiss) by genotyping
9,380 species-diagnostic RADtag SNP loci. A significantly greater proportion of the
genome appeared to be under selection favoring native cutthroat trout (rather than
rainbow trout), in the local native environments. This negative selection against
rainbow introgression was found on most chromosomes and was consistent among
populations and environments, even in warmer environments where rainbow trout were
predicted to have a selective advantage. These data are consistent with previous findings
that admixed fish have reduced reproductive success (Muhlfeld et al. 2009). Future
studies could use far more loci to precisely map tracts of hybridity and infer timing
of introgression of the rainbow haplotype segments into the native cutthroat trout.

Among the most intriguing examples of natural selection favoring “adaptive
introgression” of certain alleles following admixture is the introgression of advanta-
geous alleles from Neanderthals (and Denisovans) into modern humans. Genes
involved in sugar metabolism, muscle contraction, and oocyte meiosis have been
influenced by adaptive introgression from Neanderthals. For example, EPAS1 which
influences hemoglobin concentration and response to hypoxia has introgressed from
Denisovans into Tibetans, facilitating adaptation to life at high altitude through ancient
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admixture (Huerta-Sánchez et al. 2014). Other benefits of archaic (Neanderthal)
introgression in the past are associated with several neurological and dermatological
traits (Kelso and Prüfer 2014; Racimo et al. 2015; Vattathil and Akey 2015).

Evidence for adaptive introgression in nonhuman populations is growing. For
example, adaptive introgression was detected in the Tibetan mastiff (Canis
domesticus). Alleles for adaptation to high elevation (hypoxia) were identified at
several loci, including the EPAS1 and HBB, which were introgression from Tibetan
gray wolves (Canis lupus) (Miao et al. 2017). This demonstrates that domestic animals
could rapidly become locally adapted by secondary contact with their wild relatives.

Adaptive introgression was also associated with the evolution of seasonal varia-
tion in coat color in snowshoe hares (Jones et al. 2018). Snowshoe hare populations
molt to white during winter in order to maintain camouflage in environments with
consistent winter snow cover. However, snowshoe hares in areas that remain snow-
free year round often retain their brown coat color during the winter, thus
maintaining effective camouflage in the absence of winter snow. The brown winter
coat in snowshoe hares appears to arise from an allele that has introgressed from
black-tailed jackrabbits (Jones et al. 2018). Other studies have also shown interesting
genome-wide patterns of adaptive introgression (Song et al. 2011; Rieseberg 2011;
Pardo-Diaz et al. 2012; Norris et al. 2015; Ozerov et al. 2016; Saint-Pé et al. 2018).

New approaches to analyze mapped loci will advance understanding of hybridiza-
tion and evolution in hybrid zones. For example, large numbers of mapped loci can be
analyzed to infer “local ancestry” across genomes of individuals. This involves
mapping the locations of haplotypes arising from different source populations across
the genomes of hybrids (Guan 2014; Leitwein et al. 2018). Such ancestry tracts can be
used to estimate individual hybridity and population level admixture at both the
genome wide and local scale across chromosomes. Additionally, local ancestry
information is highly useful for trait mapping in mixed-ancestry populations (Smith
and O’Brien 2005). Because the introgressing haplotypes decay in length at a predict-
able rate with increasing generations since hybridization, analyses of ancestry tract
lengths can be informative of the historical timing of admixture events. For example,
Leitwein et al. (2018) used 75,684 mapped SNPs obtained from double-digested RAD
to identify ancestry tracts and estimate individual admixture proportions along with the
timing of admixture in brown trout (Salmo trutta).

3 Benefits of Mapped Loci in Population Genomics

Information on the location of loci in the genome is a defining characteristic of
population genomics (narrow sense), as mentioned above (Allendorf 2017). Loci can
be mapped in terms of physical and/or genetic (linkage) positions in the genome.
Producing both physical and linkage maps is far more tractable with modern
genomics methods in non-model organisms than a few years ago. As a result,
population genomics research efforts can now feasibly include the construction of
a physical or linkage map for most study systems. Below we describe the key
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features of physical and genetic maps and the relative value of each for population
genomic analyses.

Physical and genetic (linkage) mapping are two separate but complementary
ways of describing the locations of loci in the genome. A physical map is a genome
sequence. Long sequence reads from new (third)-generation sequencers enable high-
quality genome assemblies, discovery of novel fitness-affecting structural variation,
and the ability to sequence through previously “unsequenceable” repetitive DNA to
allow mapping between distant loci along each chromosome. Reference genomes for
non-model organisms often, however, are not assembled into chromosomal units,
especially when genomes are large and contain a high fraction of highly repetitive
content (i.e., retrotransposons) (Ellegren 2014; Epstein et al. 2016).

A linkage map describes the gene order based on the recombination frequency
between loci along each chromosome. Linkage maps are constructed by genotyping
pedigreed individuals and using linkage analysis, which quantifies how often adja-
cent loci co-segregate versus segregate independently due to recombination during
meiosis. The distance between loci on a linkage map is described in terms of
centimorgans (cM), where 1 cM is defined as a 1% recombination frequency
between two adjacent loci inherited from a parent. Linkage maps can be developed
in some cases where assembly of physical maps remains difficult (e.g., large conifer
genomes, De La Torre et al. 2014).

Both physical and linkage maps facilitate population genomics research in at least
five ways. First, having large numbers of mapped loci improves the power to identify
and localize loci influencing phenotypic variation, fitness, and adaptation (e.g., Burri
et al. 2016; Rastas et al. 2016). For example, the availability of densely mapped
SNPs along a chromosome allows for localization of the chromosomal region(s) and
genes underlying traits or adaptations (Figs. 2, 3, 7, and 10). This helps determine the
genetic basis of adaptations or phenotypic variation, including determination of the
number, kind, and effect size of genes underlying an adaptation or trait.

Second, physical and linkage maps also help identify independent loci, e.g., loci
far apart on the same chromosome or on different chromosomes (although statistical
tests for independence can identify independent loci without a map). Independent
loci are required for some population genetic inferences, including analyses of
effective population size (Ne), gene flow, or population relationships (Landry et al.
2002; Storz et al. 2002; Luikart et al. 2003). For example, Larson et al. (2014)
estimated Ne for wild Chinook salmon using ~10,000 SNPs and the LDNe method
(based on gametic disequilibrium) that assumes all loci are independent or not
physically linked (Waples and Do 2010). Estimates using only pairs of SNPs from
different chromosomes (<1,000 SNPs) consistently gave estimates of Ne that were
higher than when using all pairs of SNPs; for example, an Ne estimate was 1,909 for
unlinked SNPs versus only 808 for all SNPs (including linked SNPs), as expected
because gametic disequilibrium is stronger for physically linked SNPs, which drives
(biases) lower Ne estimates.

Third, the combination of a linkage map and a physical genome assembly allows
understanding variation in the recombination rate across the genome. This is impor-
tant because the recombination rate affects the extent of GD (gametic
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disequilibrium) and genetic diversity across a chromosome. Lower recombination
rates result in GD extending over longer physical distances across a chromosome. As
described below, the extent of significant GD strongly influences the power to detect
footprints of natural selection and the ability to map loci contributing to phenotypic
variation.

The recombination rate influences genetic diversity and differentiation among
populations or species via its interaction with natural selection. Knowing how
recombination rate varies across the genome is, therefore, crucial for interpreting
genomic patterns of genetic diversity and differentiation. For example, the recom-
bination rate is known to interact with background selection to generate chromo-
somal islands of reduced diversity (Charlesworth et al. 1993) and increased
differentiation (high FST, Burri et al. 2015), which might be erroneously interpreted
as resulting from positive selection.

Fourth, physical and linkage maps both help researchers determine if they have a
sufficient density of loci in the genome to have high power to detect loci subjected to
positive selection or genotype-phenotype associations.With a linkagemap, researchers
can compute how far in centimorgans (cM) significant GD spans across chromosomes
or linkage groups. Similarly, with a physical map, researchers can compute how far in
base pairs (or kb) GD spans across chromosomes. Knowing the extent of GD is
important because detection of phenotype-genotype associations and signatures of
selection required GD between genotyped loci and causal loci. In addition, detecting
phenotype-genotype associations requires GD between genotyped marker loci and
causal loci, and so a relatively high density of markers is needed (Box 2).

Box 2 Importance of Gametic Disequilibrium and Marker Density
for Identifying Adaptive Loci
Researchers recently resequenced 81 whole genomes in flycatchers with
extreme phenotypes and also genotyped 50K SNP in 415 individuals. Birds
were phenotyped for forehead patch size, a sexually selected trait associated
with reproductive success. No SNPs were significantly associated with patch
size (Fig. 10A). One reason for the failure to detect loci (QTL, quantitative trait
loci) using association mapping could be that gametic (linkage) disequilibrium
extends only over short chromosome distances (Fig. 10B), which makes the
chances of strong associations between a DNAmarker and trait loci small even
when genotyping many SNP markers (Lowry et al. 2017, but see McKinney
et al. 2017a; Catchen et al. 2017).

These results suggest that reliably detecting large-effect trait loci in large
natural populations will often require thousands of individuals and the
genotyping of hundreds of thousands of loci across the genome. Encourag-
ingly, far fewer individuals and loci will often be sufficient to achieve high
power to detect large-effect loci in small populations that typically have
widespread strong gametic disequilibrium. This study illustrates the

(continued)
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Box 2 (continued)
importance of knowing if strong gametic disequilibrium extends over long
chromosome distances (e.g., due to low recombination rates, small effective
populations size and drift, or perhaps admixture).

Fig. 10 (A) Manhattan plot of �log10 (P-value) from a genome-wide association (GWA)
analyses of color-patch size based on whole-genome resequencing of 81 male flycatchers.
Chromosome identity is shown on the x-axis, and the P-values (open circles) are arranged
according to physical SNP positions on each chromosome. Horizontal dashed lines are
permutation-based statistical significance thresholds, and the dotted lines are the Bonferroni
statistical significance thresholds of statistical significance (no points above the dashed line).
(B) The relationship between the strength of linkage disequilibrium (r2 or nonrandom
association between loci) and physical distance in 81 whole-genome resequenced collared
flycatcher males. r2 is shown for each pair of SNPs separated by 50 or fewer kb. The solid
line represents a function fitted to the rolling mean of r2 calculated in nonoverlapping
windows of 100 bp. The arrow shows where the mean of r2 drops below 0.20. The dashed
lines represent loess functions fitted to the rolling 5% and 95% quantiles of r2 in the same
nonoverlapping 100 bp windows. (C) Collared flycatcher photo (note forehead patch). (A,
B) Reproduced with permission from Kardos et al. (2016b). (C) Copyrighted license and
permission to use photo from Jiri Bohdal

Population Genomics: Advancing Understanding of Nature



We caution that while maps allow quantification of the extent of GD along
chromosomes, this quantification must be conducted for each study population of
interest because the extent of GD varies among populations with in a species
(Table 2) (Whiteley et al. 2011; Gray et al. 2009). GD will be relatively higher
(genome wide) in populations with small Ne and/or recent admixture (Fig. 11).
Quantifying GD along chromosomes also allows researchers to identify hotspots
of recombination (low GD) and thus to know which genome regions will require
higher densities of markers when screening for loci associated with adaptation or
phenotypic variation.

Directional selection is expected to reduce genetic variation and to alter the site
frequency spectrum at the selected site and at closely linked loci (Charlesworth et al.
1993). The expected physical distance over which selection affects genetic variation
depends on the local recombination rate. We expect directional selection to affect
genetic variation across larger regions when the local recombination rate is low. As
described below, accounting for recombination rate variation across the genome is
necessary in order to assess differentiation among populations (e.g., FST) measured
across each chromosome. Information on recombination patterns (genome wide)
improves interpretation of population genomic tests (GWAS, FST outliers, etc.)
because recombination can influence outlier locus behavior. For example, the rate
of recombination is expected to correlate positively with local nucleotide diversity
and rates of adaptive evolution, which could influence tests for selective sweeps
using heterozygosity or FST outlier loci (Cutter and Payseur 2013; Campos et al.
2014).

Fifth and finally, GD information from linkage or physical maps can improve
theoretical models to advance population genetics beyond bean-bag genetics.
Models parameterized with chromosomally explicit GD information can help to
understand issues such as the importance of interactions of gene flow, recombina-
tion, and selection in adaptation and speciation. Some models stress the importance
of recombination and distance among loci in the establishment and maintenance of
adaptive alleles in a population (Bürger and Akerman 2011; Yeaman and Whitlock
2011; Feder et al. 2012).

3.1 What Can Physical Maps Provide that Linkage Maps
Cannot?

Physical maps (reference genomes) generally provide higher power than linkage
maps for detecting selective sweeps or genotype-phenotype associations because
millions of SNPs can be mapped (positioned) via sequencing, whereas it is difficult
to produce linkage maps with more than approximately 20–30K SNPs. Linkage
mapping for tens of thousands of SNPs can require genotyping of many families,
which is difficult or impossible in most species due to small family sizes,
unavailability of families, or large expense of genotyping tens of thousands of loci
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in many large families. For example, a map from a single family of Chinook salmon
had 5,400 SNP loci while increasing to four families allowed mapping of 13,800 loci
(G. McKinney, unpublished data, 2018; see also Mckinney et al. 2016). There are
diminishing returns from adding families for mapping because the number of

Table 2 Estimated chromosomal length in kilobase pairs (kb) with moderate gametic disequilib-
rium (r2 ¼ 0.2) in populations from diverse species

Species [population] (Genus species)
Mean kb with
moderate GDa Reference

Flycatchers (Ficedula albicollis) <2 Kardos et al. (2016b)

Mosquito (Anopheles arabiensis) 1 Marsden et al. (2014)

Mosquito (Anopheles gambiae) <0.5 Harris et al. (2010)

Honey bee (Apis mellifera) 0.5 Wallberg et al. (2014)

Bighorn sheep [bison range population] (Ovis
canadensis)

>4,000 Miller et al. (2014)

Bighorn sheep [Ram Mountain population]
(O. canadensis)

<2,000 Miller et al. (2014)

Zebra fish [lab strain] (Danio rerio) >3,000 Whiteley et al. (2011)

Zebra fish [wild population] (Danio rerio) <20 Whiteley et al. (2011)

Murry cod (Maccullochella peelii) 5 Harrisson et al. (2017)

Rainbow trout (Oncorhynchus mykiss) 2,000 Vallejo et al. (2018)
bPig breeds [China] (Sus scrofa) ~10 Amaral et al. (2008)
bPig breeds [Europe] (Sus scrofa) ~400 Amaral et al. (2008)

Pig breed [Korea] (Sus scrofa) 3,700 Shin et al. (2018)

Common bean [Mesoamerican] (Phaseolus vulgaris) <100 Valdisser et al. (2017)

Common bean [Andean] (Phaseolus vulgaris) ~0.5 Valdisser et al. (2017)

Mung bean (cultivated) (Vigna radiata) 100 Noble et al. (2018)

Mung bean (wild) (Vigna radiata) 60 Noble et al. (2018)
cAntarctic fur seal (Arctocephalus gazella) 15 Humble et al. (2018)

Wolves [Alaska, Minnesota, or Canada] (Canis lupus) <10 Gray et al. (2009)

Wolves [Isle Royal] (Canis lupus) >5,000 Gray et al. (2009)

Wolves [Yellowstone National Park] (Canis lupus) <10 Gray et al. (2009)

Wolves [Spain] (Canis lupus) >1,000 Gray et al. (2009)
dMelon (Cucumis melo) <100 Gur et al. (2017)

Gametic disequilibrium (GD) in different populations of the same species can differ by orders of
magnitude, as seen here for zebra fish, pigs, beans, and wolves. The distance that moderate-to-
strong GD extends along chromosomes can vary due to different effective sizes (drift), substructure,
gene flow and admixture, mating system (inbreeding), recombination rates, and selection (e.g.,
sweeps)
aPublications here generally define a “moderate GD” to be r2 ¼ 0.20. Mean chromosomal distance
in kilobases (kb) at which r2 decayed to 0.2
bGD stretched 10 kb in physical distance and 0.5 cM in linkage map distance. In European pig
breeds GD extended 400 kb physical distance and 2 cM in linkage map distance
cModerate GD extended to 15 kb; strong GD (r2 ¼ 0.5) extended to 5 kb
dGD of r2 � 0.2 extended from ~75 to 100 kb (and 1 to 6 cM) in different strains
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additional loci that can be mapped declines as the number of families increases (unless
perhaps genetically divergent families, with different variable loci are mapped).

Physical maps are also useful for improving both the process of discovery of SNP
loci and of the subsequent genotyping of SNPs when using next-generation sequenc-
ing approaches such as RADseq (Sect. 4.1). For example, physical maps help
identify paralogues and duplicated genes to avoid them or genotype them by
allowing the alignment of sequencing reads to the physical map. If samples sizes
are large, paralogs can be identified in RADseq data (e.g., see HDplot method of
McKinney et al. 2017b).

Physical maps can improve genotyping by allowing the alignment of sequencing
reads to the entire reference genome during the genotyping process, instead of using
only a limited number of putative loci or de novo assembled loci (Hand et al. 2015a;
Shafer et al. 2017). A caveat is that reference genomes are never 100% complete, and
loci frommissing sections of the genome will not be genotyped if doing only reference
alignments for genotyping. If a genome is 90% complete, it is possible that 10% of
your loci would not be mapped or genotyped when using the reference for genotyping.

Importantly, a physical map (assembly) can be used for genotyping next-
generation sequencing reads from a closely related species to help improve
genotyping (Cosart et al. 2011; Shafer et al. 2017). In this scenario, reads from
one species are aligned to the genome for another for genotyping. This is a benefit of
initiatives like Genome 10k that is providing a genome assembly for one species per
genus or family of vertebrate, which provides related species a reference genome for
mapping and genotyping (Haussler et al. 2009).

Fig. 11 Gametic disequilibrium is stronger and more variable among loci (dots) in small
populations of bighorn sheep (National Bison Range, n ~50–75) compared to the moderately larger
population (Ram Mountain; n ~100–200). Strong LD (magnitude >0.4, see upper dashed line)
stretches over ~30 cM in the National Bison Range population but only to over ~10 cM in Ram
Mountain population. Reproduced with permission from Miller et al. (2014)
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3.2 What Can Linkage Maps Provide that Physical Maps
Cannot?

A high-density linkage map enables understanding of mechanisms (background/neg-
ative selection, positive selection, gene flow, and recombination) that cause heteroge-
neity along chromosomes in diversity within and differentiation between populations
(Burri et al. 2015). A linkage map reveals recombination hot and cold spots which are
known to interact with background selection to generate chromosomal islands of
divergence (high FST). Thus, a linkage map can help prevent false positives for local
adaptation and improve detection of islands of divergence that are truly indicative of
local adaptation (not false positives) (Cruickshank andHahn 2014). Regional estimates
of the recombination rate also help interpret data on runs of homozygosity (RoH) to
detect inbreeding and to infer demographic history because recombination hotspots
influence the lengths of RoH (Thompson 2013) and the density of SNPs (Charlesworth
et al. 1993) and thus the power to detect RoH in genome regions.

Chromosomal level assemblies are often not possible without a linkage map,
especially for large genomes with many repetitive sequences (Amores et al. 2011).
Assembled chromosomes in turn can be used for identification of chromosomal
synteny and structural polymorphisms such as rearrangements (e.g., inversions)
within or between species (Amores et al. 2011; O’Quin et al. 2013; Rondeau et al.
2014). Structural changes or polymorphisms can influence fitness and adaptation and
thus are important to discover and map (Wellenreuther and Bernatchez 2018).
Additionally, assembled chromosomes can improve genome scans for loci associ-
ated with adaptation and phenotypic variation, by allowing computation of
chromosome-specific distributions of summary statistics (continuously along each
chromosome), which can increase power and reliability of outlier tests.

3.3 Combining Linkage and Physical Maps: The Ideal
Genomics Approach

Having both a reference genome assembly and linkage map is ideal because they
complement each other, and the linkage map improves the accuracy and contiguity
of the assembly. Perhaps the most important point is that a linkage map must be
combined with a physical map to estimate and map recombination rates across a
genome. If researchers must choose between map types when developing genome
resources for their species, the physical genome assembly will often be the map of
choice because many more SNPs can be mapped physically; It is difficult to build
linkage maps including extremely large numbers of SNPs (e.g., because many
mapping families are required), as mentioned above.
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3.4 Apply Genomics Approaches Without Maps

Many of the methods mentioned above can be applied to sequences from known
genes or loci with unmapped locations in the genome. For example, we can conduct
tests for loci under selection by testing for different kinds of outlier behavior (FST,
GD, allele frequency skew or heterozygosity excess, excessive locus-specific intro-
gression; Luikart et al. 2003). We can also test for population adaptive differentiation
(Bonin et al. 2007) and test for associations between genotypes and the environment
or phenotypes (Fig. 1, Step 4a) (Fig. 3a).

4 Genotyping and Sequencing Technologies for Population
Genomics

This quote by Schlötterer (2004) at the start of this chapter emphasizes the impor-
tance of molecular genetic methods and implies the importance of choosing an
appropriate DNA marker or sequencing method for your research question (as did
Sunnucks 2000; Benestan et al. 2016). The methods continue to evolve and improve
our understanding of nature. SNPs and other markers from a variety of partial
genome (and transcriptome) sequencing methods are the mainstay in population
genomics studies. Here we provide a short introduction to key marker technologies
likely to be most widely useful for non-model species. Low-cost genotyping,
including RAD capture, DArT (diversity array technology), and related methods
will continue to make population genomics increasingly feasible and widely used.
Later in this book, Holliday et al. (2018, Chapter 2) provide more details and merits
and demerits of different genotyping and sequencing technologies (see also Andrews
et al. 2016; Jones and Good 2016; Holliday et al. 2018). For information on the
promising approach of multiplex sequencing of many pooled individuals (pool-seq),
see Box 3, Sect. 2.5, Schlötterer et al. (2014), and Narum et al. (2018).

4.1 Reduced Representation and Genotyping-by-Sequencing

Reduced representation sequencing is revolutionizing population genetics, molecu-
lar ecology, and conservation biology by making feasible and affordable use of
massively parallel sequencing (MPS) on many individuals and loci genome wide
(Narum et al. 2013). We can now use MPS to discover and genotype thousands of
SNP loci for less cost than genotyping of only ~20 microsatellites. This makes
population genomics research feasible for nearly any species. Understanding the
strengths and limitations of the many reduced representation approaches is crucial to
choose the best method for your research question (Andrews et al. 2016).
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Approaches for reduced representation sequencing include general and targeted
approaches (Jones and Good 2016). Anonymous approaches include unmapped
restriction site-associated DNA sequencing (RADs) and transcriptome sequencing.
Targeted approaches allow direct sequencing of loci of interest such as genes or
informative RAD loci using capture arrays (below). Informative RAD loci are those
in candidate adaptive genes and/or loci that are evenly spaced (mapped) across
chromosomes to ensure genome wide coverage and high power for outlier tests,
GEA, and association studies (e.g., GWAS) (e.g., Hohenlohe et al. 2010b; Kovach
et al. 2016; Simons et al. 2018; Gibson 2018).

4.1.1 RADseq

The development of restriction site-associated DNA sequencing (referred to as
RADseq and genotyping-by-sequencing, GBS) was considered among the most
important scientific breakthroughs in the first decade of the twenty-first century
because it allowed for simultaneous discovery and genotyping of many thousands
of SNPs in a single experiment, in non-model species with no genomic resources
(Science 2010). It involves the cutting of DNA through digestion with one or more
restriction enzymes, labeling fragments from each individual with a unique barcode
(short 6–12 bp reads), amplifying fragments using PCR, and high-throughput
sequencing of pooled samples from multiple individuals (Andrews et al. 2016).

Another advantage of RADseq is its flexibility in the number of loci that can be
genotyped – from hundreds to tens of thousands – by choosing among different restric-
tion enzymes and >15 different RADseq-based techniques (Andrews et al. 2016). A
main disadvantage is that there is typically highly uneven coverage of genotypic data
among individuals and among loci, with many individuals missing data for many loci
unless very stringent filtering is conducted with deep coverage sequencing.

This method has become extremely popular and has been applied to many taxa
and questions in conservation, ecology, and evolution including quantifying
inbreeding, genomic diversity, effective population size (Ne), and for discovery of
adaptive genes and genome regions (reviewed in Andrews et al. 2016; see also
Lowry et al. 2017; McKinney et al. 2017a; Catchen et al. 2017; Hohenlohe et al.
2010b; Nadeau et al. 2014; Benestan et al. 2016; Candy et al. 2015; Sovic et al.
2016; and also subsequent chapter by Holliday et al. (2018) in this volume).

4.1.2 Targeted Sequence Capture

Sequence capture allows targeted sequencing of any region of a genome for which
DNA sequence information exists. Sequence capture is often called “exon capture”
because it is often used to sequence coding regions of the genome, including
candidate adaptive genes (Flanagan et al. 2018). It is more expensive than RAD
but a cheaper and more efficient alternative to whole-genome sequencing and results
in more uniform sequencing of individuals and loci (and therefore less missing data)
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than restriction enzyme-based methods. It can be scaled to sequence hundreds to tens
of thousands of genes (Hodges et al. 2007; Jones and Good 2016). Another advan-
tage of sequence capture is in the genotyping of degraded DNA such as ancient,
historical, and fecal DNA (Castellano et al. 2014; Bi et al. 2012; Bos et al. 2015).

Targeted capture enriches for DNA of interest and washes away nontarget DNA,
as mentioned. This is important for genotyping fecal DNA because a majority
(>90%) of DNA can be from bacteria (e.g., Perry et al. 2010). Recent examples of
sequence capture include a wide range of question from phylogenetics to the
detection of adaption signatures in humans, wolves, sharks, wild sheep, ungulates,
birds, amphibians, trees, aquatic invertebrates, and host-parasites simultaneously
(Cosart et al. 2011; Schweizer et al. 2016, Roffler et al. 2016; Gasc et al. 2016;
Portik et al. 2016; McCartney-Melstad et al. 2016; Syring et al. 2016; Dowle et al.
2016: Campana et al. 2016; Manthey et al. 2016; Suren et al. 2016; Gauthier et al.
2017; see also Chapter 2 by Holliday et al. 2018).

4.1.3 RAD Capture

RAD capture (“Rapture”) combines the primary advantages of RADseq with advan-
tages of targeted sequence capture. For example, the relatively inexpensive and rapid
DNA library preparation methods of RADseq (Ali et al. 2015) are combined with the
high specificity in targeting hundreds or thousands of loci. Loci are of high value
(in genes, evenly spaced genome wide) for addressing nearly any questions of interest,
focusing sequencing effort on those loci (Andrews et al. 2016; Jones and Good 2016;
Hoffberg et al. 2016; Peek et al. 2018; see also Chiou and Bergey 2018). Another
advantage is that a single Rapture array (e.g., for trout) works for genotyping in
multiple divergent species such as salmon and trout (M. Miller, pers. comm., 2018).

The Rapture method was first used to successfully study SNP variation in lake
trout (M. Miller, unpublished, 2018) and rainbow trout (Ali et al. 2015). This study
used a capture array targeting 500 loci that were distributed across 29 chromosomes
(Ali et al. 2015). All 1,440 individuals genotyped for the 500 loci were sequenced in
a single Illumina HiSeq lane.

4.1.4 DArT

Diversity array technology (DArT) is another sequencing-based approach
(a modification of GBS) allowing affordable discovery and genotyping of thousands
of SNPs in hundreds of individuals (Elbasyoni et al. 2018). DArT has been used
mainly in agriculturally important species and plants (Valdisser et al. 2017). This
technology is similar to RADseq. Commercial companies exist, as for RADseq, to
facilitate the discovery and application of genome-wide markers for population
genomics approaches.
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4.2 Reference Genomes

A reference genome sequence (i.e., genome assembly) is the portion of the genome
that has been sequenced and assembled, i.e., pieced together, from short sequence
reads. A reference genome is important in population genomics because it improves
mapping of NGS reads to facilitate both the initial discovery of loci and the eventual
genotyping of loci from many individuals. For example, if the reads from a RADseq
project can be mapped to a reference genome, it can improve the detection of SNPs
and duplicated genes or chromosomal regions that will be difficult to genotype
because reads from duplicated regions often will stack up (align) together as if from
a putative single locus (Hand et al. 2015a; Shafer et al. 2017). Shafer et al. (2017)
observed large differences between reference-based and de novo approaches; use of a
reference genome yielded more SNPs and reduced estimates of FIS and Ts/Tv.

Genome assembly is difficult in large genomes of plants where repetitive
elements (e.g., retrotransposons) constitute >50% of the genome (Nystedt et al.
2013). In loblolly pine (Pinus taeda), 62% of the 22 Gb genome is made up of
retrotransposons, and other conifers have similarly large repeat element content
(De La Torre et al. 2014). Similarly, for genomes resulting from recent
polyploidization events, as in many fish and plants, the assembly is difficult because,
for example, in a tetraploid four similar copies exist for much of the genome. Most
eukaryotic genomes contain complex repetitive sequences that are difficult to
sequence and assemble as mentioned above (Ellegren 2014).

Assembly is becoming vastly easier thanks to new long-read technology as
suggested by the following quote: “Long reads enable near reference-quality
genome assemblies, discovery of novel disease-causing structural variation, and
the ability to sequence through previously ‘unsequenceable’ repetitive DNA con-
tents of clinical utility” (Ameur et al. 2018).

A reference genome sequence is not a standardized concept or item (Ellegren
2014). Even for well-characterized genomes, large parts are often not yet included
in the genomic contigs (small assembled chromosomal regions) or the scaffolds (sets
of contigs linked into larger regions) that have been ordered and linked into chromo-
somes. For example, the first published rainbow trout genome had only ~50% of
sequences assembled and ordered into chromosomes; in fact one entire chromosome
(#25) was unassembled such that no sequences were known from that chromosome
(Berthelot et al. 2014). Similarly, chromosome 16 in the collared flycatcher genome is
unassembled (Kawakami et al. 2014). In the rainbow trout and flycatcher examples,
much of the one unassembled chromosomewas likely sequenced and exists among the
many contigs that have not been incorporated (assembled) into chromosomes. The
quality and completeness of reference genomes vary widely among species.

Importantly, even partially assembled genomes are useful for many research
questions. Partial genomes facilitate discovery of non-duplicated (versus duplicated)
SNP loci for marker discovery. Partial (draft) genomes also increase quality of
genotyping (e.g., with RADSeq or DNA capture data). Finally, draft genomes help
design probes for exon sequence capture (e.g., when exons are identified from
RNAseq data), and are useful for estimating the rate or distance of decay of gametic
disequilibrium (Hand et al. 2015a; Shafer et al. 2017). Even a draft assembly (N50
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>50 kb) usually contains well-assembled coding gene regions because coding genes
have few repetitive elements and low heterozygosity, making a draft assembly
relatively feasible and highly useful. In Tasmanian devils (Sarcophilus harrisii),
researchers used a partially assembled draft genome (containing thousands of scaf-
folds not anchored on chromosomes) to successfully identify genomic regions and
candidate genes underlying cancer risk, along with concordant signatures of selec-
tion including increased GD and changes in allele frequencies (Epstein et al. 2016).

Another advantage of having at least a draft reference genome is that it allows
estimation of the rate of decay of gametic disequilibrium, which is crucial for
knowing the number of markers needed to adequately cover the genome to address
particularly interesting or challenging research questions (narrow sense genomics).
Having even only a hundred long scaffolds (>100 kb) with multiple DNA markers
provides information on whether long stretches of GD (gametic disequilibrium) exist
genome wide, which is crucial for assessing the number of markers needed to
achieve high density (Hendricks et al. 2018).

4.3 Whole-Genome Sequencing (WGS) and Resequencing

A main reason for sequencing (i.e., resequencing) entire genomes from many
individuals is to maximize power to discover and localize DNA loci underlying
fitness, adaptation, and phenotypic variation important for population persistence
and growth (e.g., Kardos et al. 2016b). Increased power results from detecting most
SNPs in the species and from being able to compute summary statistics (H, FST, GD)
for those SNPs and other polymorphisms (e.g., indels) in a sliding window across
genomic regions (e.g., Box 3).

Having only one individual’s genome sequence (e.g., from one male) will not
allow understanding of genome structural diversity or variation. This could bias
subsequent comparisons of diversity among individuals (e.g., males and females),
populations, and species, for example, when using GBS or RAD seq methods and
mapping reads to the one genome reference sequence.

Box 3 Whole-Genome Sequencing Identifies Selective Sweeps
and Candidate Genes
Researchers used whole-genome sequencing of wild Rocky Mountain bighorn
sheep (Ovis canadensis) to identify 3.2 million SNPs and genomic regions
with signatures of historical directional selection, i.e., selective sweeps
(Kardos et al. 2015b). Sweeps were detected as chromosomal regions with
low heterozygosity. Heterozygosity-based sweep analysis revealed evidence
for strong historical selection at a gene (RXFP2) that affects horn size in
domestic sheep, cattle, and goats (Johnston et al. 2011, 2013). The massive
horns carried by bighorn sheep rams appear to have evolved in part via strong
selection at the RXFP2 gene (Fig. 12).

(continued)
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Box 3 (continued)

(continued)

Fig. 12 Sequencing-based (pool-seq) genome-wide scan for selective sweeps that reduced
heterozygosity in Montana and Wyoming populations (A) of bighorn sheep (B). Sliding
window estimates of heterozygosity (C) across the bighorn sheep genome from an analysis
of three populations pooled from Montana and Wyoming. Chromosomes (linkage groups)
are arranged from 1 to 26 (left to right with alternative color (blue then orange) shading). The
horizontal jagged red line represents the rolling mean across 100 adjacent sliding windows.
The horizontal dashed line is 5 standard deviations below the mean heterozygosity. (D)
Sweep on chromosome 10 spanning the RXFP2 gene (vertical black lines at 29.5 Mb near
the x-axis are exons). Expected heterozygosity is plotted for individual SNPs (gray dots)
located across 2 Mb on chromosome 10. The location of exons (vertical lines) of EEF1A1,
RXFP2, and an uncharacterized predicted gene (“UNC”) is shown below the plot. Gene and
exon positions were obtained from the Ensemble gene models generated during annotation
of OARv3.1. The continuous horizontal jagged line shows mean expected heterozygosity
calculated for nonoverlapping windows of 20 SNPs. The lowest genetic variation in the
region occurred in a window centered at position 29,473,544 between exons 3 and 4 of
RXFP2 (dashed line arrow). Reproduced with permission from Kardos et al. (2015b)
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Box 3 (continued)
The authors also identified evidence for selection at genes affecting early

body growth and cellular response to hypoxia which is consistent with adap-
tation to life at high altitude. These results provide examples of strong genomic
signatures of selection identified at genes with known function in wild
populations of a non-model species.

A comparison of SNP diversity between the X chromosome and the
autosomes also indicated that bighorn males had a dramatically reduced
long-term effective population size compared to females. This likely reflects
a long history of intense sexual selection mediated by male-male competition
for mates, which reduces the effective population.

The approach of heterozygosity-based sweep analysis had been previously
used successfully in domestic animals where breed formation and subsequent
strong artificial selection have generated selective sweeps for genes that
influence a spectrum of phenotypic traits (Rubin et al. 2010, 2012; Axelsson
et al. 2013). In wildlife, genome sequencing of gray wolves from the high
altitude plateaus of western Asia recently detected selective sweeps surround-
ing genes involved with adaptation to hypoxia (Zhang et al. 2014). Together,
these studies provide encouragement that genome sequencing in carefully
selected wild populations will continue to yield valuable insights into the
genetics of adaptation (Kardos et al. 2015b).

The results illustrate the value of quality reference genome assemblies from
agricultural or model species for studies of the genomic basis of adaptation in
closely related wild taxa (domestic sheep in this case). This study also
illustrates the use of genome sequencing of pooled DNA from many individ-
uals (per population). This saves money and can be an efficient way to estimate
allele frequencies at nearly all SNPs in the genome. However, drawbacks
include imprecision in estimates of allele frequencies arising from uneven
contribution individuals to sequencing (pool-seq without barcoded individ-
uals). For more information, see discussions by Schlötterer et al. 2014; Kardos
et al. 2015b; Narum et al. 2018).

Certain questions can only be reliably addressed by using whole-genome
sequencing. For example, structural polymorphisms such as gene duplications
(copy number variants) cannot be reliably detected with GBS (e.g., RADseq) or
sequence capture but can be detected by whole-genome assemblies and ideally with
a linkage map (Wellenreuther and Bernatchez 2018). Additionally, adequately
covering the genome for applications, such as GWAS, will sometimes require
whole-genome sequencing for populations in which gametic disequilibrium is low
and decays rapidly along chromosomes, e.g., in populations with very large Ne or
high recombination rates (Kardos et al. 2016b; Miles et al. 2017; Table 2).
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Nonetheless, most questions in population genetics, molecular ecology, and
conservation genetics can be addressed sufficiently without whole-genome sequenc-
ing and by using a population genomics approach (Allendorf et al. 2010). These
include estimating individual inbreeding, detecting hybridization, quantifying pop-
ulation structure, and inferring gene flow. Whole-genome or exome resequencing is
most useful for questions, such as determining the genomic basis (architecture) of
local adaption or fitness when only a limited amount of gametic disequilibrium exists
along chromosomes and thus millions of SNPs are required, for example.

4.4 Population Transcriptomics, Gene Expression,
and Adaptation

Transcriptomics is the study of all RNA transcripts (transcriptome) that are produced
by the genome. Population transcriptomics is the use of transcriptome-wide data to
study variation in gene expression within and among populations to understand
mechanisms underlying evolutionary change, for example, in response to environ-
mental change. Such mechanisms can include plasticity in gene expression if it
underlies adaptive evolutionary responses to new environments (Ghalambor et al.
2015) or if the amount or nature of plasticity itself evolves in response to selection.
Here, we discuss the two main tools of population transcriptomics, microarray
analysis and RNA sequencing (RNAseq), with examples of applications to natural
populations.

cDNA microarrays and oligonucleotide microarrays can measure expression of
thousands of genes simultaneously by quantifying levels of mRNA present in
different tissues or individuals. Thousands or tens of thousands of different short
DNA fragments are spotted onto a glass slide or other template, and cDNA from the
individuals being studied, labeled with fluorescent dyes or other markers, is hybrid-
ized with that array. The intensity of fluorescence provides a quantification of the
relative expression levels of targeted genes. Results are often validated with more
precise estimates of RNA abundance (expression) using quantitative PCR for a
subset of genes.

Gene expression profiles can be viewed as phenotypes because they are the
product of both genetic and environmental variation (Hansen 2010). To assess
genetic differences underlying gene expression, individuals can be reared in a
common environment. Information on gene expression differences among
populations can be used to complement data on neutral or adaptive genetic markers
and adaptive traits for circumscribing conservation units. For example, Vandersteen
Tymchuk et al. (2010) quantified gene expression for populations of Atlantic salmon
in and around the Bay of Fundy, Newfoundland, using a 16,000 gene cDNA
microarray. They found consistent year-to-year population differences in the expres-
sion of 389 genes when fish were reared in common environments. Population
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differentiation for gene expression was stronger, and patterns were somewhat
different than those observed for seven microsatellite loci.

RNAseq (also called whole transcriptome shotgun sequencing) is replacing
hybridization-based microarray technologies for many applications thanks to low-
ering costs of next-generation sequencing (Ozsolak and Milos 2011; Wang et al.
2009; Oomen and Hutchings 2017). RNAseq can more comprehensively assess the
entire repertoire of RNA molecules expressed from genomes over a wider range of
expression levels than can microarrays. We note that RNAseq can also be used for
SNP discovery, for SNP genotyping, or for probe design for exon capture. For
example, Bi et al. (2012) use RNAseq to discover SNPs within coding genes.
They then used the gene sequences to design DNA sequence capture baits to test
for SNPs associated with adaptive differentiation in chipmunks.

RNAseq and RADseq were used by Chen et al. (2018) to test for genetic variation
in thermal adaptation in redband trout populations (Oncorhynchus mykiss gairdneri)
from warm versus cool environments. In a common garden, fish from a desert
climate had significantly higher thermal tolerance and aerobic scope (>3�C) for
higher cardiac performance (e.g., without arrhythmia) than fish from the cooler
montane climate. In addition, the desert fish had the highest maximum heart rate
during warming, indicating improved capacity to deliver oxygen to internal tissues.
Following heat stress, distinct sets of cardiac genes were induced, which helped
explain the differences in cardiorespiratory function. Candidate RADseq SNP
markers and nearby genes underlying these physiological adaptations were identi-
fied, including genes involved in metabolic activity and stress response (such as heat
shock genes hsp40, ldh-b, and camkk2). This kind of study is rare in that it identified
both transcriptomic and genomic mechanisms of evolutionary adaptation that allow
populations to persist in the difficult environmental conditions of desert streams.

5 Bioinformatics for Filtering, Genotyping, and Data
Analyses

Bioinformatics skills and understanding are crucial to analyze the increasingly
massive DNA sequence datasets. Bioinformatics involves intensive computations
to analyze DNA, RNA, and protein sequence datasets. The field of bioinformatics
underwent explosive growth starting in the mid-1990s, driven largely by the Human
Genome Project and rapid advances in DNA sequencing technology. Thus, the need
for bioinformatics training and approaches has increased greatly in the last decade as
the data produced by massive parallel sequencing approaches has grown exponen-
tially. However, while the costs of genome sequencing are plummeting, time and
money spent on bioinformatic data filtering and analysis (and production of bioin-
formatics platforms) have increased more slowly over time (Sboner et al. 2011).
Given the many advantages and increasing ease of generating massively parallel
sequencing (MPS) data, it has become crucial for population geneticists to be trained
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in computer programming and scripting to take full advantage of the growing catalog
of bioinformatics tools (Andrews and Luikart 2014).

There are four major bioinformatics steps, often referred to as a bioinformatics
pipeline, that occur in most population genomics studies including (1) sequence read
filtering, (2) assignment of reads to loci (e.g., alignment to a reference genome or de
novo loci assembly), (3) genotype calling, and (4) final filtering for problematic loci
that do not meet biological expectations (e.g., Hardy-Weinberg proportions, high
numbers of SNPs per locus (or 100 bp) usually resulting from alignment error, high
observed heterozygosity, or more than two observed alleles) (Benestan et al. 2016).
A major challenge in bioinformatic analysis is the creation of standardized pipelines
(e.g., see the Broad Institute webpage for best practices – software.broadinstitute.
org) that would improve consistency and comparison of results among species (and
studies within species) but also even within the same species. Worrisome is the fact
that different pipelines often result in very different results (for a given dataset) such
that the number SNPs discovered and basic summary statistics and conclusions can
change between pipelines (Shafer et al. 2017).

Analysis of up to entire genomes (millions of SNPs) presents challenges in
filtering out loci that could lead to erroneous results and conclusions. There are no
concrete rules for what criteria should be used for filtering loci from genomic
datasets. The current state of filtering in population genomics has led to some
colorful terms for filtering such as labeling filtering as the “F-word” or that filtering
of genomic data is the “wild west” of population genomics (Benestan et al. 2016).
Indeed, the potential effects of locus filtering approaches on downstream analyses
and research conclusions have only recently started to be investigated (e.g., Lowry
et al. 2017; Rodríguez-Ezpeleta et al. 2016; Shafer et al. 2017). However, it has also
been suggested and shown empirically that filtering is helped greatly by the exis-
tence of a reference genome (Ellegren 2014; Hand et al. 2015a, b; Shafer et al. 2017).

Despite recent attempts to build conceptual and practical frameworks for MPS
data analysis, a standardized pipeline remains elusive, and perhaps infeasible, given
the nature of data variability present in most genomic datasets (Benestan et al. 2016).
There has also been a move toward web-based platform analysis and filtering tools
such as Galaxy which has gained users and popularity in recent years (Giardine et al.
2005; Afgan et al. 2016). Galaxy offers a more user friendly graphical interface
for easy visualization and reproducibility of results through the tracking (logging) of
all bioinformatic analysis steps and user-created and shared workflows. Workflows
are flowchart-style representations of bioinformatics pipelines with drag and drop
functionality that allows for easy customization, reproduction, and even publication
of bioinformatics pipelines (Catchen et al. 2013; Eaton 2014). Galaxy also offers
tools across a range of datatypes including RAD and RNAseq, WGS, and exon
capture (Blankenberg et al. 2010; Pogorelcnik et al. 2018; Tranchant-Dubreuil et al.
2018). See the chapter “Computational Tools for Population Genomics” by Salojärvi
(2018) in this book for more information.
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6 Emerging Population Genomics Approaches

Here, we discuss emerging approaches that will become more widely used as costs
decrease and technologies improve. These include population metagenomics,
transcriptomics, epigenomics, proteomics, and paleogenomics.

6.1 Metagenomics

Metagenomics is the sequencing and analysis of DNA from all species in
an environmental or gut sample (Srivathsan et al. 2016; Stat et al. 2017;
Laforest-Lapointe et al. 2017; Waite et al. 2018). Metagenomics has usually been
defined more narrowly as the study of DNA from microbial communities in envi-
ronmental samples, perhaps because the initial studies were in microbes (Venter
et al. 2004; Garcia et al. 2018). Metagenomics can be used to describe the diversity
and relative abundance of taxonomic groups present within a single sample, exper-
iment, or local population (DeLong 2009). These techniques have been applied
widely to microbes in environmental samples, including water, soil, fecal, or gut
samples, and subjected to high-throughput sequencing. Further, analysis of the
functional groups of genes and their relative abundance, without requiring knowl-
edge of which organism each sequence fragment came from, can provide a func-
tional metabolic profile of the microbial community (Dinsdale et al. 2008).

From a population genomics perspective, metagenomics can allow the applica-
tion of population genomics approaches (e.g., Fig. 1 or Fig. 2) on each of multiple
microbial species, simultaneously. Further, if the microbial species are sampled
from across a heterogeneous environment (or gradient), it facilitates the application
of a landscape community genomics approach to improve understanding of eco-
evolution interactions (Sect. 2.4; Hand et al. 2015b). Another application of
metagenomic data is to describe a microbial community as an essential part of an
individual host’s phenotype, influencing the health and fitness of the host. The
application of metagenomics in ecology, evolution, and conservation is in its early
stages, but a few specific areas show promise for the future. A chapter in this book
series volume describes how population genomics approaches can be applied to
metagenomic data to delineate microbial populations in the environment and to
study evolutionary processes within them (Denef 2018).

Metagenomic surveillance systems are increasingly being used to improve mon-
itoring and determine mechanisms driving the spread of infectious diseases. Portable
genomic sequencers provide rapid near real-time diagnostics that can resolve impor-
tant epidemiological and genomic characteristics of an outbreak or epidemic’s
dynamics. As pathogens replicate and spread, mutations accumulate in their
genomes. The whole-genome sequencing of spatially referenced samples allows
researchers to track and reconstruct geo-spatial pathways of spread. Genomic epi-
demiology surveillance and rapid response programs can now take a more anticipa-
tory approach to outbreak prevention and control.

G. Luikart et al.



Genomics-informed DNA detection assays have been developed to track a wide
range of important fungal plant pathogens, including introduced, invasive species
causing widespread diseases and mortality in natural populations and crop species
(Feau et al. 2018). Monitoring and understanding which strains are emerging and
associated with different environments and species (including humans) would also
help to model, predict, and manage outbreaks and spread of pathogens. Whole-
genome data from individual pathogen species in each of many host individuals can
be used in population genomics approaches (or landscape community genomics
approaches) to better understand the genomic basis of adaptation to hosts and local
environments and to predict the effects of environmental change on a pathogen
population and microbial community (Hand et al. 2015b).

Another application of metagenomics is to monitor or predict physiological
condition, health, or fitness of individual organisms. For instance, Vega Thurber
et al. (2009) have found shifts in the endosymbiont community of corals in response
to stressors, such as reduced pH, increased nutrients, and increased temperature.
Such shifts in the endosymbiont community could serve as indicators or predictors
of reef health, and they could also suggest mechanisms by which coral condition
affects other taxa in the reef ecosystem (Roitman et al. 2018; Leite et al. 2018).

Finally, a large-scale study used metagenomic techniques on fecal samples to
catalog 3.3 million microbial genomes in the human gut fauna (Qin et al. 2010). The
study found significant differences in the microbial metagenome between healthy
individuals and those with two types of inflammatory bowel disease (Qin et al.
2010). In the future metagenomic techniques will be applied to noninvasively-
collected fecal samples from wildlife species to assess their health status, such as
starvation or disease infection, and to understand mechanisms underlying host and
microbe interactions, population genomics, and coevolution (e.g., Beja-Pereira et al.
2009; Chiou and Bergey 2018; Waite et al. 2018).

6.2 Metatranscriptomics

While metagenomics focuses on detecting the presence of microbial species,
metatranscriptomics investigates their gene expression profiles to address questions
such as which genes are expressed in different environments or conditions. Thus,
metatranscriptomics investigates the function and activity of the entire set of tran-
scripts (RNAseq) from environmental, fecal, gut, or other samples. It is often used to
identify sequences of genes expressed within natural microbial communities to
advance understanding of microbial ecology and drivers of gene expression
variation.

Assessing all the microbial community transcripts from a particular time and
location, including bacteria, archaea, or small eukaryotes in the ocean, soil, or an
organism’s gut, can help understand the complex microbial processes simulta-
neously occurring in natural or disturbed environments. This allows “eavesdropping
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on microbial ecology,” a promising new approach for researchers in ecosystem
ecology, animal health, and functional biodiversity monitoring (Moran 2009).

From a population genomics perspective, metatranscriptomics – like
metagenomics – can facilitate landscape community genomics approaches to
improve understanding of eco-evolutionary processes (Hand et al. 2015b).
Transcriptomic and metatranscriptomic data can detect gene expression shifts in
both host and microbes simultaneously (e.g., lung tissue and lung parasites, gut
tissue and gut parasites, blood and malaria, etc.) and thus can help understand,
model, and predict host-parasite interactions (e.g., Matthews et al. 2018; Lee et al.
2018; Campbell et al. 2018).

Metatranscriptomics and metagenomics together can provide entire transcriptome
and genome repertoires of microorganisms through sequencing total DNA/RNA
from samples; this provides taxonomic and also functional information with high
resolution. These two approaches together with new bioinformatics tools can help us
better understand mechanisms of adaption, coevolution, and processes like rumen
fermentation, digestion, and community adaption to environmental change. A chal-
lenge for “meta” approaches is that only a small percentage of the many ecologically
important genes has been annotated or identified. Sequence datasets often contain
only the abundant genes from a limited number of natural microbial communities
(Moran 2009).

6.3 Population Epigenomics

While epigenetic inheritance is well documented the adaptive significance, if any, of such a
complementary inheritance system remains enigmatic (Lind and Spagopoulou 2018).

Among the most intriguing and perhaps controversial areas of population
genomics research involves understanding the role of transgenerational epigenetic
inheritance in adaptive evolution. Can a strong environment change produce
transgenerational epigenetic adaptation? Epigenetics has been defined as the
study of heritable changes in a trait or phenotype caused by mechanisms other
than DNA mutation. We focus here on transgenerational epigenetic inheritance,
which is defined as changes in gene expression and resulting phenotypic variation
that are transmitted between generations through germline, but do not involve
changes in the underlying DNA sequence (Horsthemke 2018).

If environmentally caused shifts in gene expression are adaptive and transmitted
to subsequent generations, it could represent a Lamarckian-type mechanism facili-
tating adaptation to environmental challenges, such as climate warming (e.g.,
Christie et al. 2016; Lind and Spagopoulou 2018; Horsthemke 2018). This idea
could perhaps provide hope to conservation biologists that rapid adaption to climate
warming is more likely than previously thought based on adaptation through natural
selection. This idea is perhaps intriguing but still farfetched given the lack of
evidence. The explosive growth in research on this topic results in part from the
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question of whether “epigenetic mechanisms might provide a basis for the inheri-
tance of acquired traits” (Horsthemke 2018).

Charlesworth et al. (2017) state that “allele frequency change caused by natural
selection is the only credible process underlying the evolution of adaptive
organismal traits.” Similarly, Horsthemke (2018) states that the evidence for
transgenerational epigenetic inheritance, “is not (yet) conclusive,” in mammals,
even though “it has been observed in plants, nematodes and fruit flies.” While
there is strong evidence for environmentally induced transgenerational inheritance
of epigenetic gene expression changes that influence fitness traits, there is not yet
evidence that such epigenetic changes persist in the longer term (many generations)
or that they influence population genetic or evolutionary processes.

Questions outlined by Charlesworth et al. (2017) can help guide future research to
investigate the potential role of transgenerational epigenetic inheritance in evolu-
tionary adaptation. These questions include the following: How many generations
do inherited epigenetic marks persist, and do they spread within and among
populations? Also, are transgenerational epigenetics changes an important source
of adaptive change, relative to DNA sequence change (Charlesworth et al. 2017)?
These are population epigenetics questions, which now can be addressed using
densely distributed epigenetic marks genome wide, thereby representing “narrow
sense” population epigenomics.

Here we discuss recent evidence for environmentally induced multigenerational
epigenetic inheritance. We also discuss the role or importance of this inheritance in
population genomics research and understanding.

Evidence is growing rapidly for multigenerational transmission of environmen-
tally induced epigenetic changes that influence fitness traits. Environmental factors
observed to cause transgenerational epigenetic inheritance of phenotypic variation
include heat shock or other thermal stresses, drought, salt stress, low-calorie diet,
high-fat diet, smoking, and exposure to toxins, such as hydrocarbons from plastics,
atrazine, tributyltinthe, pesticide DDT (dichlorodiphenyltrichloroethane), and the
agricultural fungicide vinclozolin. Many of these stressors have caused trans-
generational epigenetic inheritance in humans, fish, birds, plants, and insects.

Genome-wide environmentally induced transgenerational epigenetic inheritance
of disease was documented in a recent study in rats. Ben Maamar et al. (2018)
exposed one generation of gestating female rats to DDT or alternatively vinclozolin.
The offspring (F1 generation) were bred to generate the F2 generation that was then
bred to generate the F3 generation (keeping separate the populations exposed – in the
F0 generation – to vinclozolin, DDT, or control treatments). The F3 generation
males’ sperm revealed persistent environmentally induced histone modification
genome wide (Fig. 13), which influences gene expression to cause disease. The
fact that two different environmental toxins, each promoted transgenerational epi-
genetic (histone) changes, suggest that histone sites have a role in epigenetic
transgenerational inheritance.

A particularly interesting study of epigenetic changes suggested that a single
generation in an extreme environment (captivity, in a hatchery) can translate into
heritable differences in expression at hundreds of genes. Christie et al. (2016)
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measured differential gene expression in the offspring of wild and first-generation
hatchery steelhead trout (Oncorhynchus mykiss) and found 723 differentially
expressed genes in the two groups of offspring reared in the same common envi-
ronment. Functional analyses of the 723 genes revealed that most genes involved
responses in immunity, wound healing, and metabolism. The large proportion of
immunity and healing genes being differentially methylated suggest that the high
density, rapid growth (and diet change), and aggression among fish in captivity lead
to disease and wounds. Finally, wild-born fish that had only one hatchery parent had
much lower reproductive success in the wild (compared to fish with two wild
parents), suggesting that adaptation to captivity leads to transmission of maladaptive
gene expression to wild-born offspring. These findings suggest that rapid environ-
mental adaptation is possible and might be transmitted to offspring through “herita-
ble” (transmitted) epigenetic changes.

It is becoming clear that multiple ancestral environmental influences, such as
toxins, stress, or unusual nutrition, can sometimes induce germline epigenome
changes called epimutations that are transmitted to descendants. These epimutations

Fig. 13 Sperm histone site differences (site retention) caused by DDT (dichlorodiphenyl-
trichloroethane) and transmitted over multiple generations. Red arrowheads are individual chro-
mosome locations of histone differences in sperm. DDT-induced histone differences cause
transgenerational epigenetic inheritance of disease. Purified cauda epididymal sperm were collected
from the transgenerational F3 generation male rats for histone analysis. Reproduced with permis-
sion from Ben Maamar et al. (2018)
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often occur in the germline and thus are transmitted (Gapp and Bohacek 2018).
The germline epigenetic changes are often imprinted, and avoid epigenetic
reprogramming (resetting/removal), and thus transgenerational inheritance occurs.
Sperm RNAs are a mechanism for transfer of acquired complex phenotypes from
father to offspring (Gapp et al. 2014). Stressful experiences were shown to cause
metabolic and behavioral changes in mice that can be transmitted through RNAs in
sperm to the offspring (Gapp and Bohacek 2018). Long-term studies are needed in
natural populations to understand if inherited epigenetic marks persist across enough
generations to significantly affect evolutionary processes, such as individual fitness,
local adaption, gene flow, and population persistence.

6.3.1 Epigenetic Variation and Mechanisms

Here we discuss epigenetic variation that is potentially important evolutionarily but
for which limited transgenerational inheritance information exists. Epigenomic
variation is widespread in wild populations of plants (Schmitz et al. 2013a, b;
Niederhuth et al. 2016) and animals (review in Hu and Barrett 2017). Epigenetic
mechanisms causing gene expression shifts include DNA methylation, histone
modifications, as well as variation in small RNAs. DNA methylation is the most
frequently studied and best-understood epigenetic process to date. With the devel-
opment of massive parallel sequencing techniques to examine genome-wide epige-
netic marks, such as bisulfite DNA sequencing, epigenomics has progressed from
investigating individual epigenomes to studying epigenomic variation across
populations and species (e.g., Gavery and Roberts 2017).

The sources of epigenetic/epigenomic variation include genetic factors, environ-
mental factors, or stochastic epimutations (reviews in Taudt et al. 2016; Yi 2017;
Richards et al. 2017; Martin and Fry 2018). Recent studies have identified both the
cis and trans regulatory genetic mechanisms conditioning population epigenomic
variation at individual epigenetic marks to integrated chromatin state maps in a wide
variety of species (review in Taudt et al. 2016). A number of methylation quantita-
tive trait loci (meQTL) and histone quantitative trait loci (hQTL) have been identi-
fied in humans, plants, and animals (Taudt et al. 2016). Most of the work has been
done on understanding the association of genetic (SNP, meQTL) and epigenetic
variants for DNA methylation (DMR, differentially methylated region; DMP, dif-
ferentially methylated polymorphism; SMV, single methylation variant; SMP, single
methylation polymorphism). Nearly all of the detected meQTL in human mapped in
cis association (review in Taudt et al. 2016).

Schmitz et al. (2013a), in the first plant population epigenomics study, examined
the genome-wide DMRs in natural accessions of Arabidopsis worldwide and inte-
grated these data with the whole-genome DNA sequences of the same accessions.
They reported that 35% of the DMRs could be associated with meQTL, and 26% of
the associations could be mapped to methylation changes in cis. In maize (Zea mays)
about 50% of DMRs were associated in cis, with SNPs found within or near the
DMR (Eichten et al. 2013). Similarly, cis meQTL-DMR associations were
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widespread in soybean (Glycine max) (Schmitz et al. 2013b). Heritable variation
in methylation can be genetically based (and not sensitive to the environment),
or environmentally induced, or a combination of both. Additionally, random
epimutations can cause epigenetic variation as well.

6.3.2 Associations Between Epigenomic Variation and Phenotypic,
Ecological, and Disease Traits

There is growing evidence that epigenetic mechanisms and epigenomic variation
contribute significantly to phenotypes, abiotic and biotic stress responses, disease
conditions, adaptation to habitat, and range distributions in a variety of organisms
(review in Richards et al. 2017). This has significance in the context of acclimation
and adaptation to climate change. Epigenomic differences are often correlated with
ecological and environmental factors (see Richards et al. 2017). For example, DNA
methylation patterns were found to be associated with a climate gradient in Quercus
lobata (Gugger et al. 2016).

Recent population epigenomics studies have concentrated on associations
between epigenomic variation and phenotypic, ecological, disease, and other traits
in humans, plants, and animals through epigenome-wide association studies
(EWAS) and epigenome environment association analysis (epiEAA), and a number
of significant associations have been identified. In particular, substantial EWAS
work has been done in the past few years to identify the association of DNA
methylation with common human disease conditions.

DNA methylation has been found to be significantly associated with kidney
function (Chu et al. 2017), type 2 diabetes (Meeks et al. 2017), panic disorder
(Shimada-Sugimoto et al. 2017), cardiovascular diseases (Nakatochi et al. 2017),
cancer (Xu et al. 2013), chronic obstructive pulmonary disease and lung function
(Lee et al. 2017), and other conditions. Population epigenomics has a role to play in
pharmacogenomics and personal medicine (see Kabekkodu et al. 2017). In plants
epigenetic variation has been associated with various phenotypic, phenological, and
disease and adaptive traits, such as salt tolerance (Foust et al. 2016), disease
susceptibility (Sollars and Buggs 2018), and flowering time (Aller et al. 2018).

Population epigenomics, as such, is an emerging approach in population geno-
mics. The detailed discussion of various aspects of population epigenomics is
presented in the chapter by Moler et al. (2018) later in this book. This includes the
molecular basis of epigenetic mechanism, sources and evolution of population
epigenomic variation, intra- and interspecific epigenomic variation, molecular and
bioinformatics methods in population epigenomics, and association of epigenomic
variation with phenotypic, ecological, and disease traits and pharmacogenomics. See
also recent reviews (e.g., Gapp and Bohacek 2018) and the special edition set of
papers on the evolutionary consequences of epigenetic inheritance (Lind and
Spagopoulou 2018).
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6.4 Population Proteomics

Population proteomics is the study of structural and functional variation (qualitative
and quantitative) in proteins within and among populations to better understand their
role in individual fitness, phenotypic variation, local adaption, and population
performance (see also Biron et al. 2006; Nedelkov et al. 2006; Nedelkov 2008).
Enzyme protein polymorphisms (isoenzymes, isozymes, allozymes) provided the
first molecular markers for population genetic studies. Protein electrophoresis stud-
ies were widely conducted for several decades before DNA markers became avail-
able (Charlesworth et al. 2016).

Although population proteomics gained attention around 2005 (e.g., Biron et al.
2006; Nedelkov et al. 2006; Nedelkov 2008), especially for biomarker discovery for
human disease conditions, it has not kept pace with population genomics owing to
the rapid advances in high-throughput DNA and RNA sequencing technologies.
However, the development of 2D gel electrophoresis, mass spectrophotometry
methodologies (such as MALDI TOF), and shotgun proteomics methods has made
high-throughput protein analysis possible. This has accelerated population proteo-
mics studies across different species (e.g., Ma et al. 2015; Armengaud 2016; Di et al.
2016; Hidalgo-Galiana et al. 2016; Colinet et al. 2017; Gamboa et al. 2017; Suhre
et al. 2017).

Since proteins influence important phenotypes and are the products of genes and
epigenetic or posttranslational mechanisms, population proteomics has the potential
to provide key insights into functional and metapopulation ecology, adaptation, and
acclimation processes under various climate and environment conditions (e.g., Biron
et al. 2006; Karr 2008; Di et al. 2016; Colinet et al. 2017; Gamboa et al. 2017; Trapp
et al. 2018). Population proteomics approaches also help identify genetic loci
underlying risk of disease and for clinical biomarkers for many human disease
conditions (Nedelkov et al. 2006; Suhre et al. 2017).

Most population proteomics studies to date have been focused on humans,
especially for discovering and validating biomarkers for clinical disease conditions.
High levels of protein diversity have been reported in humans. For example, a total
of 76 structural forms variants were observed for the 25 plasma proteins (an average
of 3 variants per protein) in a cohort of 96 individuals (Nedelkov et al. 2005).
Proteomics-based genome-wide association studies have identified many associa-
tions between protein levels and gene variants (protein QTLs, pQTLs) in different
population cohorts (summary provided in the supplementary table in Suhre et al.
2017 and updated on http://www.metabolomix.com/a-table-of-all-published-gwas-
with-proteomics/). For example, Suhre et al. (2017) reported 539 pQTLs in German,
Asian, and Arab cohorts, and associations overlapped with 57 genetic risk loci for
42 unique diseases.

Proteomics approaches have also been useful in nonhuman systems. For example,
clear ecotype-specific protein variation was found among eight Arabidopsis
ecotypes that were related to their physiological status (Chevalier et al. 2004).
Rees et al. (2011) reported significant within and among population variation in
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proteins in three species of the teleost fish Fundulus; The authors suggested that the
patterns of protein expression have evolved by natural selection.

Gamboa et al. (2017) investigated protein expression in five stream stonefly
species (Plecoptera) from four geographic regions along a latitudinal gradient in
Japan with varying climatic conditions. They found high spatial variation in protein
expression among four geographic regions that were positively correlated with water
temperature. However, low interspecific variation was observed in proteins within
geographical regions, suggesting regulation of protein expression varied with envi-
ronment and relates to local adaptation.

In Drosophila, Colinet et al. (2017) studied the regulatory mechanisms involved
in the acquisition of thermal tolerance. They note that reversible phosphorylation is a
common posttranslational modification that can rapidly alter proteins functions.
They conducted a large-scale comparative study of phosphorylation networks in
control versus cold-acclimated adult Drosophila and found that acclimation evoked a
strong phosphoproteomic signal characterized by large sets of unique and differen-
tial phosphoproteins. In diving beetles (Agabus ramblae and A. brunneus), Hidalgo-
Galiana et al. (2016) found protein expression parallels thermal tolerance and
ecological conditions in the diversification of these two Agabus species.

These studies suggest that research on proteomic variation among natural
populations along environmental gradients can provide insights into mechanisms
underlying eco-evolutionary processes such as local adaptation, diversification,
range shifts, and speciation. Future studies including genome-wide proteome data
combined with population and landscape genomics approaches on multiple species
(e.g., landscape community proteogenomics) will be especially helpful for under-
standing and predicting adaptive evolution, population performance, coevolution,
and adaptive divergence.

6.5 Paleogenomics

Paleogenomics is the study of genomes of ancient organisms from fossil remains or
specimen excavated from caves, permafrost, ice cores, or archeological or paleon-
tological sites or stored in museum and herbarium collections (Heintzman et al.
2015; Lan and Lindqvist 2018). Paleogenetics and paleogenomics are recent fields of
research relying on the extraction and analysis of preserved ancient DNA (aDNA).
Early paleogenetics research was based on sequencing of mitochondrial DNA
(mtDNA) fragments because of high copy numbers of the mitochondrial genomes
in a cell. This research has provided quite useful information on phylogenetic
relationships and timing of divergence among organisms and biographical patterns
(Lan and Lindqvist 2018).

Paleogenomic studies are providing insights into complex evolutionary histories
of ancient and extinct organisms, including humans (Homo sapiens) (Rasmussen
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et al. 2010; Meyer et al. 2012; Prüfer et al. 2014), phylogenetic and evolutionary
relationships of extinct organisms with living species and populations (e.g., Prüfer
et al. 2014; Heintzman et al. 2015; Lan and Lindqvist 2018), inferences of demo-
graphic patterns and ancient admixtures in human and other organisms (Meyer et al.
2012; Prüfer et al. 2014; Shapiro and Hofreiter 2014; Lan and Lindqvist 2018),
reconstruction of ancient adaptive phenotypes and inferences of extinction causes,
such as in wooly mammoth (Mammuthus primigenius) (Palkopoulou et al. 2015;
Rogers and Slatkin 2017), and causal agents and evolutionary history of ancient
pandemics, such as Black Death (bubonic plague), small pox, tuberculosis and
leprosy (reviewed in Lan and Lindqvist 2018), ancient pathogens through human
history (Marciniak and Poinar 2018), and structural variants in ancient genomes
(Resendez et al. 2018).

Paleogenomic investigations have provided key insights into the origin and
history or domestication of crop plants (reviewed in Lan and Lindqvist 2018) and
animals, such as dogs (Canis lupus familiaris) (Frantz et al. 2016; Thalmann and
Perri 2018), cats (Felis catus) (Geigl and Grange 2018), and horses (Equus caballus)
(Orlando et al. 2013; Orlando 2018), origins and genetic legacy of Neolithic farmers
and human settlement in Europe (Skoglund et al. 2012), reconstruction of ancient
plant communities (Parducci et al. 2018), and epigenomics of ancient species
(Hanghøj et al. 2018). Most of the above paleogenomics aspects are discussed
later in this book in the chapter “Paleogenomics: Genome-scale Analysis of Ancient
DNA and Population and Evolutionary Genomic Inferences” by Lan and
Lindqvist (2018).

One of the most studied topics in paleogenomics is the evolution of human
species and its phylogenetic and evolutionary relationships with its closest evolu-
tionary relatives. The first ancient human genome was sequenced by Rasmussen
et al. (2010) from permafrost-preserved hair of a ~4-kyr-old Paleo-Eskimo. Then
paleogenomes from archaic hominins, Neanderthal and Denisovan, were sequenced
and published (Meyer et al. 2012; Prüfer et al. 2014). These paleogenomics studies
suggested that that Neanderthal and Denisovan populations shared a common origin,
that their common ancestor diverged from the ancestors of modern humans, and that
admixture had taken place between archaic hominins and the ancestors of modern
humans most likely after the dispersal of modern non-African humans out of Africa
(Meyer et al. 2012; Prüfer et al. 2014). The analysis also indicated that this gene flow
was from Neanderthal into the common ancestor of modern Eurasians.

Another example of paleogenomics applications is the inferences of the causes of
extinction of the iconic ancient animal wooly mammoth, which was an abundant
megafaunal species of the Northern Hemisphere. As mentioned above (Sect. 2.6),
paleogenomics studies provided evidence that genetic stochasticity due to small
population size could have contributed to the extinction of this species (Palkopoulou
et al. 2015; Rogers and Slatkin 2017).
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7 Does the Field of Population Genomics Promise More
Than It Can Deliver?

Population genomics holds a great deal of promise for increasing our understanding
of the genetic basis of phenotypic variation and adaptation in natural populations.
However, population genomics is not a panacea for addressing the outstanding
fundamental questions in many areas of biology. Genomes are tremendously com-
plex, and traits related to fitness are often highly polygenic. Researchers need to
better recognize the limitations of some methods and the opportunities for mislead-
ing or misinterpreted results (e.g., false positives and false negatives for selection
tests). For example, the hallmark genomic signatures of positive selection (e.g.,
highly reduced genetic variation, shifted site frequency spectrum, or alleles associ-
ated with environmental variation) can arise from forces other than positive
selection.

False signatures of positive selection can occur where purifying (background)
selection has reduced genetic variation, particularly in genomic regions with low
recombination (Charlesworth et al. 1993; Wolf and Ellegren 2017). Regions with
low genetic variation can be caused by a locally low mutation rate, or where large
haplotypes have drifted to high frequency or fixation in populations with small Ne

(Nielsen et al. 2005; Kardos et al. 2015b). Regions with very high FST relative to the
genome-wide background can occur between insipient species as a result of selection
within lineages (e.g., background selection or recent selective sweeps), rather than
via divergent selection during speciation (Burri et al. 2015; Charlesworth et al. 1993;
Cruickshank and Hahn 2014; Payseur and Rieseberg 2016; Wolf and Ellegren
2017). Thus, genomic signatures of positive selection, including selective sweep
signals and FST outlying regions must be interpreted cautiously.

Population genomics studies can have low power to detect loci related to adap-
tation or variation in phenotypes among individuals, especially for highly polygenic
traits. The relatively low density of SNPs generated, in certain species, when using
some technologies (e.g., some RADseq or sequence capture) means that selective
sweeps, FST outliers, associations between markers and environmental variables,
and QTLs may be missed because of low or no gametic disequilibrium between the
genotyped SNPs and causal loci (Kardos et al. 2016a; (Catchen et al. 2017; McKin-
ney et al. 2017a). Associations and outliers can also be missed by genotyping only a
limited number of SNPs from an adaptive gene or a selected genome region (Fig. 6).

Additionally, the relatively low sample sizes that are frequent in studies of
non-model organisms in the wild means that power to detect loci with relatively
large effects may often be low, even when whole-genome sequencing is used in
natural populations (Kardos et al. 2015a; Lotterhos and Whitlock 2014; Hunter
et al. 2018; Flanagan et al. 2018). Finally, to help increase the understanding of
the genetic basis of ecological and evolutionary traits and processes, we recommend
applying multiple population genomics and related approaches (at different func-
tional levels from DNA to RNA and proteins), as in Vasemagi and Primmer (2005).
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8 Future Perspectives and Needs

Among the most exciting advances from “neutral” marker studies will be our
improved understanding of inbreeding depression and genetic rescue in natural
and managed populations. This will result from the fact that only 5000–10000
SNP loci are required to vastly improve precision of estimation of individual
inbreeding compared to traditional marker-based and pedigree approaches (Kardos
et al. 2016a). There will soon be many publications that use genomic data to estimate
inbreeding depression (and genetic rescue) in many populations, which could
change our view of the importance of inbreeding in conservation and evolution.
Interestingly, most publications in the vast inbreeding literature had low power and
precision to estimate inbreeding and inbreeding depression effects.

Even more exciting will be the use of novel, more informative statistical estima-
tors such as ROH (runs of homozygosity), which measures inbreeding and effective
population size change (Palkopoulou et al. 2015; Kardos et al. 2018; Grossen et al.
2018). The bioinformatic prediction of deleterious alleles from sequence data will
also increase our ability to understand the genomic architecture of inbreeding
depression and to predict and compare populations for genetic load.

An interesting advance will be the improved understanding of the importance of
transgenerational epigenetic inheritance in adaptive traits (Charlesworth et al. 2017).
Advances are likely to give the explosion of research and publications, following the
controversy and calls to test the relevance of epigenetic “inheritance” in evolutionary
processes and given lower costs for next-generation (bisulfite) sequencing
(Christie et al. 2016; Le Luyer et al. 2017; Nilsson et al. 2018; Horsthemke 2018).
Can environmentally induced transgenerational epigenetic inheritance contribute
substantially to adaption to changing environments?

Another general advancement in power and precision will result from calling of
microhaplotypes from short-read data. Most publications that use next-generation
short-read data (e.g., RADseq) have not called haplotypes but rather scored only one
SNP (or two independent SNPs) per locus, even though multiple SNPs exist per
locus, e.g., RAD loci (Hendricks et al. 2018). Haplotype calling will yield more
alleles (haplotypes), additional genealogical or phylogenetic information, and thus
more power for many applications in population genetics (Sunnucks 2000). Longer
single-end and paired-end reads and new software for haplotype calling will also
improve power (Baetscher et al. 2018).

Understanding of the importance of structural polymorphisms in fitness and
adaptation will increase soon (Wellenreuther and Bernatchez 2018). Genotyping
and detection of inversions and copy number variants are becoming more feasible
thanks to longer-read sequencing, reference genomes, linkage maps, and improved
software for discovering and genotyping structural polymorphisms (e.g., Farek et al.
2018). This will help population genomics move beyond SNPs. This is an important
advancement because structural variations are often involved with fitness-related
phenotypic variation (e.g., Küpper et al. 2015) and are thought to play a key role in
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sex chromosome evolution, local adaptation, and speciation (Kirkpatrick 2010;
Wellenreuther and Bernatchez 2018).

Many studies will estimate gametic disequilibrium along chromosomes
(or contigs) using draft genome assemblies, thereby allowing more informative
“narrow sense” population genomics studies with mapped high-density markers.
Even a few hundred contigs of 50–500 kb and 1,000s of marker loci will provide
quantification of genome-wide GD (gametic disequilibrium) required for some
narrow sense genomics approaches. Depending on the genome size and complexity,
an investment of $10k to $20k can achieve a useful draft reference genome with an
N50 of >50 kb for many species (Catchen et al. 2017; McKinney et al. 2017a;
Hendricks et al. 2018).

There is a need to train researchers and students in data analysis including the
initial filtering, genotyping, and data interpretation steps which requires an under-
standing of population genetics theory (Andrews and Luikart 2014; Allendorf 2017;
Shafer et al. 2015; Hendricks et al. 2018). The trend toward learning the latest
molecular techniques (RAD approaches, DNA capture, pool-seq, etc.) at the expense
of a solid grounding in population genetics theory is worrisome (Allendorf 2017).
Training in theoretical and conceptual aspects of population genetics enables
researcher to ask good questions and to adequately test and interpret the massive
and growing datasets against appropriate null models (Benestan et al. 2016;
Allendorf 2017).

There is an urgent need for understanding the effects of data analysis choices on
downstream biological inferences (Farek et al. 2018), because these choices can
dramatically influence downstream statistical results and inferences (Shafer et al.
2017; Hendricks et al. 2018). We need to validate pipelines and downstream
genomic statistical estimators, ensuring they are unbiased, by analyzing raw simu-
lated and empirical data from populations with known genotypes and evolutionary
parameters (Ne, Nm, S) in order to verify that we can recover or estimate the true
(known) genotypes and parameters. Related to this, the field needs to develop a set of
best practices for identifying possible genotyping errors, quantifying error rates, and
quantifying effects of data analysis choices on downstream results and conclusions.
The most rigorous approach for ensuring data quality can vary substantially from
dataset to dataset and will change through time as the structure and quality or data
change; thus we need the next generation of population genomicists to be well
trained in bioinformatics and programming (Andrews and Luikart 2014).

Finally, new computational approaches and modeling made easy by ABC
(approximate Bayesian computation) will vastly improve data analysis and inference
from population genomic data (Cabrera and Palsbøll 2017; Elleouet and Aitken
2018). However, extensive model performance evaluations are required to ensure
computational approaches are applied reliably and competently to natural
populations (e.g., Lotterhos and Whitlock 2014; Forester et al. 2018; see Appendix
in Allendorf et al. 2013).
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9 Conclusions

Population genomics is transforming many sub-disciplines in biology and vastly
improving our understanding of nature (Schlötterer 2004; Hohenlohe et al. 2018).
The greatest advances in our fundamental understanding of populations and the
translation of that knowledge to decisions around managing and conserving
populations will result from applications of conceptually novel “narrow sense”
genomics studies. This revolution will continue to accelerate for many years as
more studies combine population genomics, transcriptomics, transgenerational
epigenomics, and proteomics approaches simultaneously to multiple species
co-distributed across environments (Chen et al. 2018; De Kort et al. 2018). This
increase in strategic applications of narrow sense and multiple omics approaches
combined with phenotypic and environmental data (e.g., from sensor networks and
remote sensing) will ensure we will soon be answering long-standing questions
along with novel questions yet to be imagined by humanity. It is an exciting time to
be a population genomicist!
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