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A B S T R A C T

Statistical estimation of parameters in large models of evolutionary processes is often too
computationally inefficient to pursue using exact model likelihoods, even with single-nucleotide
polymorphism (SNP) data, which offers a way to reduce the size of genetic data while retaining
relevant information. Approximate Bayesian Computation (ABC) to perform statistical inference
about parameters of large models takes the advantage of simulations to bypass direct evaluation
of model likelihoods. We develop a mechanistic model to simulate forward-in-time divergent
selection with variable migration rates, modes of reproduction (sexual, asexual), length and
number of migration-selection cycles. We investigate the computational feasibility of ABC to
perform statistical inference and study the quality of estimates on the position of loci under
selection and the strength of selection. To expand the parameter space of positions under
selection, we enhance the model by implementing an outlier scan on summarized observed
data. We evaluate the usefulness of summary statistics well-known to capture the strength of
selection, and assess their informativeness under divergent selection. We also evaluate the effect
of genetic drift with respect to an idealized deterministic model with single-locus selection. We
discuss the role of the recombination rate as a confounding factor in estimating the strength of
divergent selection, and emphasize its importance in break down of linkage disequilibrium (LD).
We answer the question for which part of the parameter space of the model we recover strong
signal for estimating the selection, and determine whether population differentiation-based
summary statistics or LD–based summary statistics perform well in estimating selection.

1. Introduction

Divergent selection occurs when populations adapt to contrasting environments, causing the accumulation of genomic differences
ue to differential selective pressure in these environments. Identity of loci under divergent selection and estimating the strength of
ivergent selection at these loci play a key role in detecting divergent selection, which can be a driving force of speciation [1]. Here,
e aim to build theoretical and experimental models of divergent selection and assess the computational feasibility and quality of

tatistical inference under these models. Specifically we investigate whether the loci under divergent selection can be identified,
nd the strength of selection can be estimated with reasonable precision using state of the art simulation-based statistical methods.
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Our experimental system is the baker’s yeast (Saccharomyces cerevisiae) as a fast-evolving model organism. Yeast is an eukaryotic
model organism with a moderate number of linear chromosomes (n=16) and a genome-wide number of cross-over events per meiosis
that is comparable to larger eukaryotes [2], but with small genome size (12 Mb). Yeast can undergo both asexual and sexual
reproduction. Crossing of yeast strains and meiosis (sporulation) can be experimentally controlled. The sporulation when sexual
reproduction takes place requires starvation of yeast from nitrogen, glucose, and carbon source [3]. Single haploid spores can be
isolated and sequenced to determine haplotype phase across the genome as well as precisely map meiotic crossover, gene conversion
events, and recombination rate heterogeneity across the genome [2].

Some of the challenges in detecting divergent selection are as follows. On the statistical side, divergent selection models that
we investigate are the result of stochastic processes on genomes through generations and therefore, they are large models. This
causes two main challenges for statistical inference. The first is formulating a workable exact likelihood function. Simulation-based
computational methods working with approximate model likelihoods as opposed to exact likelihoods partially solves this problem.
The second is making inference scalable for large simulation studies to investigate model properties so that we know what to expect
when we perform inference using data. A well-known simulation-based method based on approximate likelihoods is Approximate
Bayesian Computation (ABC). ABC uses simulated data under an assumed model using a large set of parameter values to generate
an approximate sample from the posterior distribution of interest by bypassing the evaluation of the likelihood function [4].

On the genetics side, physical linkage of nearby neutral loci to the locus under selection may lead to genetic hitchhiking [5]
(i.e., the change in allele frequency at neutral loci), which contributes to the formation of genomic islands [6], thereby making
identifying the locus under selection challenging. The magnitude of the hitchhiking effect is modeled to be proportional to the
distance of the actual locus under selection, influenced by the recombination rate [7], for which we apply an average, fixed genomic
recombination rate.

Keeping these two main difficulties in perspective, we design a computationally efficient simulator scalable at genomic scales to
study the behavior of a divergent selection model. We use our simulator in a large simulation study to assess which statistics are
informative about divergent selection, under variable migration, mode of reproduction (sexual or asexual), and in the presence of
fixed recombination. We also investigate the bias and variance of estimators in estimating the strength of selection.

To address these, in Section 2, we describe the experimental design of the biological yeast system and model parameters
controlled in laboratory settings, the developed theoretical population genetics model, and how the experimental design of the
theoretical model translates to the biological model. Next, in Section 3, we describe the constraints of the process of generation
of the data, define the model parameters, and we build the simulator for the theoretical population genetics model. In Section 4
we describe the ABC, and how it assesses the summary statistics from the simulator output data in the estimation of the model
parameters, with and without the initial outlier scan on the observed data where the outlier scan reduces the parameter space of
potential positions under selection to be considered. In Section 5 we present our results on estimating model parameters from both
with and without the loci outlier scan, and for four different scenarios under which the initial parameters vary for the outlier scan
method. To conclude, in Section 6 we discuss the application of the simulation study combined with the ABC to bypass the likelihood
function, the role of the parameter space of selection and for which part we recover a strong signal, what summary statistics out
of the tested with our model outperform the others, and finally the confounding role of the recombination rate to make inferences
about the biological yeast system.

2. Model

In this section, we first describe the biological system in which yeast is used as a model organism in an experimentally controlled
nvironment of selective pressures, type of reproduction, and strength of migration. Then we describe a theoretical population
enetics model as an idealization of this biological system.

.1. Description of the biological system and experimental design

We have genetically engineered an obligate diploid cross between our two focal yeast strains, a North American oak isolate
YPS128) and an Australian vineyard isolate (DBVPG1106). The YPS128 and DBVPG1106 strains form the biological system
xperimental setup and they differ by over 70,000 SNPs, an average of 1 SNP per ∼165bp [8]. We treat each SNP as a locus.
he two strains form a diploid pool, without recombination, followed by sporulation of randomly selected two parents, during
hich recombination occurs, to create an offspring ancestral pool at time 𝑡 = 0. Half of the ancestral becomes a founding population
ssigned to evolve in sodium dodecyl sulfate (SDS) and the other half of the ancestral pool becomes a founding population assigned
o evolve in sodium chloride (NaCl). These environments induce differential selective environmental pressures in two populations.

The biological experiment was performed under four different migration-selection cycles treatments, with three replicates per
reatment. The four different treatments were as follows: no migration and no sporulation (asexual reproduction), no migration
nd sporulation (sexual reproduction), 20% migration and sporulation, and 50% migration and sporulation. During the divergence
ith gene flow, the populations evolve asexually in one of the mediums for 5 days, which is assumed to be equivalent to 𝑡∗ = 50
enerations. Then, one of the four scenarios of migration conditional on the type of sexual reproduction is implemented for one

eneration. This cycle is repeated four times, resulting in evolution under divergent selection for approximately 200 generations.
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2.2. Description of the theoretical population genetics model

We assume diploid organisms that differ by 𝐿 bi-allelic loci. Each population is of constant effective population size 𝑁𝑒, and they
evolve in non-overlapping generations. We obtain the populations 𝑿𝟎 and 𝒀 𝟎 at time 𝑡 = 0 by crossing the founding populations at
ll loci consisting of all private alleles at 𝐿 loci, then incorporating the recombination events into the process, and finally we evolve
he populations through generations as follows.

We assume that the two parental genomes for an offspring are uniformly randomly (independently of each other) distributed, one
arent from each population. The number of recombinations on the offspring’s genome, 𝑛𝑟, is binomially distributed with probability
. We define the position vector on which these 𝑛𝑟 events happen by 𝑳𝒓, ‖𝑳𝒓‖ ≤ 𝐿, at which recombination events are uniformly
andomly (independently of each other) distributed on 𝐿 loci. The two parental genomes are recombined in positions defined by
𝒓 to obtain the offspring genome.

The reproduction in recurring cycles of 𝑡∗ generations: We start from 𝑡 = 0, isolate 𝑿𝒕 and 𝒀 𝒕 from each other and implement
sexual reproduction for a sequence of 𝑡∗ − 1 generations. These 𝑡∗ − 1 generations allow for population and loci-specific divergent
election to act on each population.

We let 𝑠𝑖 to denote the selection coefficient at locus 𝑖 ∈{1, 2,… , ‖𝑳𝒔‖}, where the fitness of the reference allele 𝑎𝑖 under selection
s (1 + 𝑠𝑖) if population carrier has 𝑎𝑖 copy, else (1 + 0). We assume that selection effects are additive across loci on the genome such
hat the fitness of an individual at time 𝑡 − 1, in population 𝑗 (𝑗 ∈ {𝑿, 𝒀 }) (Part A of Fig. 1) is

𝜔(𝑗,𝑡−1)
𝑛 =

‖𝑳𝒔‖
∑

𝑖=1

(

1 + 𝐈𝑛{𝑎𝑖∈(𝑗,𝑡−1)}𝑠𝑖
)

. (1)

hen, for each distinct genome, the probability of including an offspring at generation 𝑡 is multinomially distributed with the
robability of successes proportional to their normalized fitnesses given by

𝑝𝑛 =
𝜔(𝑗,𝑡−1)
𝑛

∑𝑁𝑒
𝑛=1 𝜔

(𝑗,𝑡−1)
𝑛

. (2)

From generation 𝑡∗ − 1 to 𝑡∗ populations undergo asexual or sexual reproduction with recombination and symmetric migration.
igration rate from 𝑿𝒕∗−𝟏 to 𝒀 𝒕∗ and from 𝒀 𝒕∗−𝟏 to 𝑿𝒕∗ is denoted by 𝑚. We sample uniformly randomly (independently of each

ther) 𝑁𝑒𝑚 parents to migrate from population 𝑗 to the other population. After migration, reproduction is either sexual (𝑠𝑒𝑥 = 1),
r asexual (𝑠𝑒𝑥 = 0). If 𝑠𝑒𝑥 = 0, an offspring is an exact copy of a single parent chosen uniformly randomly. If 𝑠𝑒𝑥 = 1, we choose
wo parents uniformly randomly (independently of each other) from the same population. The recombination steps are the same as
escribed above (Part B of Fig. 1).

The next reproduction cycle starts at generation 𝑡∗+1 (Part C of Fig. 1), for a total of specified number of cycles 𝑛𝑐𝑦𝑐𝑙𝑒𝑠, with final
eneration occurring before migration, i.e. 𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠𝑡∗ − 1. Visual representation of the experimental design of recombination
ates and modes of reproduction is seen in Fig. 2

. Model parametrization, the data, and the divergent selection simulator

In this section, we delineate the constraints on the data-generating process, define the parameters of the population genetic
odel, and finally build a simulator. The divergent selection simulator allows us to explore the divergent selection model motivated

y the yeast populations built in the lab and it constitutes one of our main contributions.

.1. Model parametrization and the data

To capture differences in population 𝑿 relative to population 𝒀 , we economically use signed selection coefficients. We arbitrarily
ix the reference allele 𝑎𝑖 at locus 𝑖 with selection coefficient 𝑠𝑖 (𝑖 ∈{1, 2,… , ‖𝑳𝒔‖}) for the other allele at that locus in population
. A negative 𝑠𝑖 means that for allele 𝑎𝑖 at locus 𝑖, an individual in population 𝑿 has a lower fitness in comparison to an individual

n population 𝒀 . Unlike in population 𝑿, the fitness of the reference allele 𝑎𝑖 under selection in population 𝑿 is always (1 + 0) for
carrier in population 𝒀 , regardless of whether the carrier in population 𝒀 has the 𝑎𝑖 copy or not.

SNPs in yeast occur for approximately one in every 165bp. We assume equally spaced SNPs in the genome and rescale the
enome-wide recombination rate proportionally. We further assume that there is at most one crossover event between consecutive
NPs. We let 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 be the spacings between 𝐿 SNPs, which allows us to denote the total genome length by 𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 .
he recombination rate is a function of 𝐿 and 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 is a constant: 𝑟 = 𝑓 (𝐿), 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 𝐶.

In the experimental laboratory setup, the migration rate and the length of migration-selection cycles 𝑡∗ are controlled, and the
ecombination rate can be estimated as described earlier in Section 1, and in Section 2.1. The migration rates are fixed at {0, 0.2, 0.5}.
or the recombination rate 𝑟, we use values from the literature and assume them fixed and known. A typical computational procedure
imicking sequenced yeast genome informed by our laboratory procedures is as follows. We picked to simulate 𝐿 = 1, 500 SNPs

ecause it is computationally scalable. This number translates into about one-third on mean of SNPs of a chromosome that the
wo yeast strains in our biological model system from Section 2.1 differ by over 70,000 SNPs [8]. The mean recombination rate of
accharomyces cerevisiae has been estimated as 3.5×10−6 Morgans/bp in the literature [9], with inferred genome-wide recombination
rofiles from sequenced isolates from an advanced intercross line (AIL) to be as high as 3.0 × 10−5 Morgans/bp for a two-way cross

t genome hotspots [10]. Here, for our laboratory procedures mimicking the sequenced yeast, we fixed the genome recombination
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Fig. 1. Population genetic model for divergent selection: A. Population divergence for 𝑡∗ − 1 generations during which reproduction is asexual and the absolute
fitness depends on the allele-specific copy under which selection acts upon. Each offspring is genetically identical to its only parent and an individual is chosen
to be a parent with probability proportional to its fitness. B. Symmetric migration rates 𝑚𝑋𝑌 and 𝑚𝑌 𝑋 between 𝑡∗ − 1 and 𝑡∗ generation. Neutral evolution with
recombination. C. Second population divergence.
4
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rate of 𝑟 = 2.0 × 10−5 Morgans/bp. One way to think about this value is as a best statistical estimate for recombination hotspots in
yeast. For the other scenarios with a smaller number of SNPs for computational time efficiency, we scaled the recombination rate
to 𝑟 = 3.0 × 10−4, proportionally to the expected number of recombination events.

Fixing unknown parameter values to their point estimates instead of jointly estimating them is not ideal. Recombination rate is
known to be a particularly problematic parameter in population genetic models with selection and recombination. This is due to the
fact that the two evolutionary processes might generate statistically similar signals in genetics. In models the recombination rate 𝑟
was varied in our simulations the signal from divergent selection was confounded to the degree that there were no useful statistical
inferences to distinguish true loci under selection. However, our work is a first serious effort to model divergent selection and to
explore the statistical properties of estimates of a parameter of interest (strength of divergent selection) in a large evolutionary
model. Free model parameters of not direct interest such as recombination rate cause statistical identifiability issues that jeopardize
the statistical inference. These issues have not been solved in population genetics (except in small models) and their discussion is
beyond the scope of this paper. Statistical identifiability of model parameters kicks in when there is a large number of interacting
parameters in a population genetics model that are not fixed, but vary.

Table 1 describes the full parametrization with assumed values for fixed and known parameters and prior distributions for
unknown and to be estimated parameters. We tried to choose reasonable support for the prior distributions based on yeast
literature [10–15]. To be explicit in probability functions of the model representation, in addition to standard conditionality notation
separating the observables and parameters, we denote the fixed and known parameters by 𝑲 = (𝑟, 𝑡∗, 𝑛𝑐𝑦𝑐𝑙𝑒𝑠, 𝑁𝑒, 𝐿, 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔) where

is the recombination rate per genome per generation, 𝑡∗ is the number of generations between reproduction cycles, 𝑛𝑐𝑦𝑐𝑙𝑒𝑐 is the
umber of reproduction cycles, 𝑁𝑒 is the effective population size, and 𝐿 is the number of SNPs, 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 is the spacing on the
enome between each SNP. We write the joint probability mass function generating the data as

𝑃 (𝒙|𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲) (3)

here, 𝒙 is an 𝑁𝑒 by 𝐿 matrix of zeros and ones for the SNP data for each population, 𝒔 = (𝑠1, 𝑠2,… , 𝑠
‖𝑳𝒔‖

) is the vector of signed
election coefficients at each locus, 𝑚 is the symmetric migration rate per generation between the two populations, 𝑠𝑒𝑥 is the mode

of reproduction, 𝒍 = (𝑙1, 𝑙2,… , 𝑙
‖𝑳𝒔‖

) is the vector of indicators to denote loci under selection.

3.2. Simulator for the data generating process

Below we describe how the data are generated with the simulator. We input effective population size 𝑁𝑒, number of SNPs per
carrier to be simulated 𝐿, loci corresponding to SNPs under selection 𝑳𝒔, alleles under selection 𝑎, recombination rate 𝑟, selection
coefficients at loci under selection 𝑠, migration rate between populations 𝑚, number of generations between migration-selection
cycles 𝑡∗, type of reproduction during migration generations 𝑠𝑒𝑥, spacing of SNPs on the genome, assumed equal spacing 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 ,
and number total number of generations to simulate 𝑡𝑓𝑖𝑛𝑎𝑙.

The model parameters that are estimated from the output simulator are the loci under selection and corresponding selection
oefficients, although we allow the migration rate between populations 𝑚 and the type of reproduction during migration generations
𝑒𝑥 to vary between simulations but we do not estimate them. The estimated model parameters are sampled from the joint prior
istribution, i.e. 𝜽∗𝒊 ∼ 𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲).

Our simulated data of bi-allelic SNPs are 𝑁𝑒 × 𝐿 matrices per population represented by 𝒙.
The SNPs of each carrier in the population correspond to the matrix row. For each of 𝑁𝑒 carries per population an allele 𝑎 is

sampled from discrete uniform distribution bound on [0, 1] and replicated 𝐿 times, corresponding to the probability of 0.5 of carriers
from founding 𝐹0 population 𝑿 and of 0.5 from founding 𝐹0 population 𝒀 , to build 𝐹1 populations 𝑿 and 𝒀 respectively.

Offsprings are then generated from the recombination of two parental genomes per offspring. For 1 to 𝑁𝑒 per population,
the first parent is sampled with equal probability from 𝑿𝑭 𝟏

, and the second parent is sampled with equal probability from 𝒀 𝑭 𝟏
,

oth from a discrete uniform distribution, i.e. 𝑝1 ∼ Discrete Unif[1, 𝑁𝑒] from 𝑿𝑭 𝟏
and 𝑝2 ∼ Discrete Unif[1, 𝑁𝑒] from 𝒀 𝑭 𝟏

. The
umber of recombination events 𝑛𝑟 between 𝑝1 and 𝑝2 are sampled from 𝐵𝑖𝑛(𝐿×𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 −1, 𝑟), with 𝑟 corresponding to genomic
ecombination rate and 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 corresponding to SNP spacing on the genome. Loci of recombination events, 𝑳𝒓, are sampled 𝑛𝑟
imes from 𝑳𝒓 ∼ Discrete Unif[𝑛𝑟, 𝐿×𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 −1]. If a random variable 𝑟𝑣 sampled from Uniform distribution on [0, 1] is less than
.5, i.e. if 𝑟𝑣 ∼ Unif[0, 1] < 0.5, 𝑝1 is reassigned to 𝑝2 and 𝑝2 is reassigned to 𝑝1. The recombination of 𝑝1 and 𝑝2 then starts from the
enome of 𝑝1 and alternates between two parents to form an offspring. This concludes founding 𝐹2 at time 𝑡 = 0.

Then, the selection and asexual reproduction occur for 𝑡∗ − 1 generations. Absolute fitness of parents 𝜔(𝑗,𝑡−1)
𝑛 for each population

in 𝑿, 𝒀 for each carrier 𝑛 is calculated. For loci under selection specified by an input vector 𝑳𝒔, absolute fitness of parent at 𝑡−1 is
(𝑗,𝑡−1)
𝑛 =

∑
‖𝑳𝒔‖
𝑖=1

(

1 + 𝐈𝑛{𝑎𝑖∈(𝑗,𝑡−1)}𝑠𝑖
)

, where 𝑠𝑖 correspond to non-zero selection coefficients specified by vector 𝒔∗ = (𝑠∗1 , 𝑠
∗
2 ,… , 𝑠∗

‖𝑳𝒔‖
),

nd alleles under selection specified by vector 𝒂∗ = (𝑎∗1 , 𝑎
∗
2 ,… , 𝑎∗

‖𝑳𝒔‖
).

Probability of carrier in the population 𝑝𝑛 having an offspring is the normalized absolute fitness 𝑝𝑛 =
𝜔(𝑗,𝑡−1)
𝑛

∑𝑁𝑒
𝑛=1 𝜔

(𝑗,𝑡−1)
𝑛

. The 𝑁𝑒 offspring

re 𝑁 (𝑗,𝑡)
𝑒 ∼ Multinomial(𝑁𝑒,𝒑), with normalized absolute fitness probabilities 𝒑 =

(

𝑝1, 𝑝2,… , 𝑝𝑁𝑒

)

.
At generation, 𝑡∗ migration between populations takes place, specified by migration rate 𝑚, with the corresponding type of

reproduction specified by 𝑠𝑒𝑥 ∈ {0, 1}.
The migration-selection cycles as described in Part A and Part B respectively are repeated for a total specified number of cycles

𝑛𝑐𝑦𝑐𝑙𝑒𝑠, with ending on the final generation before migration, i.e. 𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠𝑡∗ − 1. The output of the data of the 𝑥 matrices of
dimension 𝑁 × 𝐿 per population is then ready for model inference by mapping the data to summary statistics and the ABC.
𝑒
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Table 1
Properties of parameters in the model.

Parameter Status Value Prior Motive

𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔

fixed and
known

genome length
number of SNPs strains differ by =
165

—- genome length of about
12 Mpb and strains
differ by about 73,000
SNPs [8]

𝜇𝑛𝑟 fixed and
known

4.95 —- expected value of
number of
crossovers= E(Bin(𝐿 ×
𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1, 𝑟))

𝑟 fixed and
known

2.0 × 10−5 Morgans/bp, and
3.0 × 10−4 Morgans/bp for
𝐿 = 1, 500 and 𝐿 = 100
respectively

—- already done in
literature [10,14,15]

𝑙𝑖 fixed, but
unknown for
1st method;
not fixed and
unknown for
2nd method,
where
potentially
identified
within outlier
scan,
specified by
𝑠𝑒𝑡𝑙𝑖

—- 𝑠𝑒𝑡𝑙𝑖 = {𝑙𝑖=1 =
𝐿∕3, 𝑙𝑖=2 =
𝐿∕2, 𝑙𝑖=3 = 2𝐿∕3} for
1st method; 𝑠𝑒𝑡𝑙𝑖
identified by initial
outlier scan of 5%
for 2nd method

fixed loci as discrete
value parameters at
which selection acts to
reduce the parameter
space to
{𝑙𝑖=1 = 𝐿∕3, 𝑙𝑖=2 =
𝐿∕2, 𝑙𝑖=3 = 2𝐿∕3} and
setting the values for
rest of loci to zero for
1st method; less
selection parameter
values 𝑠𝑖|𝐼 = 𝑖 to
estimate in ABC after
initial outlier scan, and
setting the values for
loci not identified by
outlier scan to zero for
2nd method

𝑠𝑖|𝐼 = 𝑖 unknown and
estimated

—- Unif[−0.25, 0.25] for
𝑡∗ = 5, and
Unif[−0.025, 0.025]
for 𝑡∗ = 50
respectively

considered a large
range of parameter
space for 𝑠𝑖|𝐼 = 𝑖 in
yeast [16], and 10-fold
smaller for 10-fold
longer selection
generation cycles for
comparison

𝑛𝑟 random and
unknown

—- —- number of
recombination events
sampled from
Bin(𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1, 𝑟)

𝑳𝒔 fixed but
unknown

—- Discrete Unif[𝑠𝑒𝑡𝑙𝑖 ] vector 𝑳𝒔 of length 0,
1, or 2 of loci under
selection to reduce the
parameter space

𝑳𝒓 random and
unknown

—- —- vector 𝑳𝒓 of length 𝑛𝑟
of loci of recombination
events sampled from
Discrete Unif[𝑛𝑟 , 𝐿 ×
𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1]

𝑚 fixed but
unknown

—- Discrete Unif[𝑠𝑒𝑡𝑚],
𝑠𝑒𝑡𝑚 = {0.0, 0.2, 0.5}

methods of estimation
of 𝑚 already developed
[12] but considering
some variability (𝑠𝑒𝑡)

𝑁𝑒 fixed and
known

10,000 —- already done in
literature [13,17]

𝐿 fixed and
known

1,500 or 100 —- 1,500 SNPs is about
one-third on average of
SNPs of a chromosome
for a yeast cross [8];
100 SNPs is for faster
computational time

(continued on next page)
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Table 1 (continued).
𝑡∗ fixed and

known
5 or 50 —- short enough selection

generation cycles of
𝑡∗ = 5 to consider large
range of parameter
space for 𝑠𝑖; longer
selection generation
cycles of 𝑡∗ = 50 for
comparison

𝑛𝑐𝑦𝑐𝑙𝑒𝑠 fixed and
known

2 or 4 —- two different
population mixing
frequencies for
comparison on the
signature of selection

𝑠𝑒𝑥 fixed but
unknown

—- Discrete Unif[𝑠𝑒𝑡𝑠𝑒𝑥],
𝑠𝑒𝑡𝑠𝑒𝑥 = {0, 1}

yeast system can
reproduce sexually or
asexually [11]

4. Inference about model parameters via approximate Bayesian computation (ABC)

The probability distribution given in expression (3) is not available in closed form and the joint likelihood of the data cannot be
valuated given the parameters. There are no exact methods to perform statistical inference about the unknown model parameters in
his case. As a practicable solution to the problem of performing inference about the model parameters, we employ ABC to sample
he posterior distribution of parameters [4,18–24]. ABC bypasses the explicit evaluation of the joint likelihood thereby making
imulation-based inference feasible when model likelihoods cannot be evaluated. Statistical inference in ABC is characterized by two
ain approximations. The first approximation is due to substituting the exact likelihood of the data with a kernel-based numerical

pproximation. The second approximation is due to substituting the likelihood of the data with the likelihood of the summary
tatistics. Whether and by how much these approximations affect the quality of the inference depends on the size of the model
enerating the data and the computational budget available to increase accuracy of the approximation. For the first approximation,
ood practices have been established. Assessing the quality of the second approximation, however, is particularly challenging in
class of models where there are no known sufficient statistics for unknown parameters. Our divergent selection model falls into

his class. In this section, we investigate the usefulness of some population differentiation statistics to perform inference about the
arameters of our divergent selection model.

Based on expression (3) for the probability model generating the data, we denote the joint posterior distribution of parameters
iven the data 𝒙 and fixed and known parameters as

𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍|𝒙;𝑲) ∝ 𝑃 (𝒙|𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲)𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲), (4)

where 𝑃 (𝒙|𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲) is the joint likelihood of the data and 𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲) is the joint prior distribution of unknown parameters.
Incorporating the two approximations described in the previous paragraph, we write the likelihood as

𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍|𝑺𝒖𝒎𝑺𝒕𝒂𝒕;𝑲) ∝ 𝑃 (𝑺𝒖𝒎𝑺𝒕𝒂𝒕|𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲)𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲), (5)

where 𝑺𝒖𝒎𝑺𝒕𝒂𝒕 is summary statistics. In the next two subsections, we evaluate some useful summary statistics in the context of our
model.

4.1. Summary statistics and outlier scan on summarized observed data

The effect of divergent selection on genomes between samples of two populations can be quantified by well-known statistics that
measure of genetic differentiation. An example is Wright’s fixation index [25], 𝐹𝑆𝑇 . For bi-allelic loci 𝐹𝑆𝑇 defined by:

𝐹𝑆𝑇 = 𝜎2𝑝∕[�̄�(1 − �̄�)] (6)

which measures allele frequency differentiation among the sampled populations [26]. Here, 𝜎2𝑝 is the variance in allele frequency
among sampled populations, and �̄� is the mean allele frequency in sampled populations. A signed version of 𝐹𝑆𝑇 , which we denote
by 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 obeys the following: 𝐢𝐟 (𝑝𝑋 − 𝑝𝑌 ) < 0, 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 = −𝐹𝑆𝑇 , 𝐞𝐥𝐬𝐞 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 = 𝐹𝑆𝑇 , such that 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 ∈ [−1, 1]. This statistic
captures the information about which sampled population is undergoing selection advantageous with respect to the other sampled
population.

At the genomic scale, it is often computationally infeasible to approximate the likelihood based on 𝐹𝑆𝑇 jointly for all loci. A
practicable remedy, which we follow here, is first to determine a set of candidate loci under selection manifesting only outlier values
of 𝐹𝑆𝑇 and consider the likelihood based on these loci. We take the outlier cutoff to be 𝐹𝑆𝑇 outside of the 95% of all 𝐹𝑆𝑇 values
in the data [27]. The selection coefficients can take on values within a range defined in Table 1, it is not a single value, for which
we can derive an estimated 𝐹𝑆𝑇 cut-off value, therefore we do not consider just large 𝐹𝑆𝑇 values. In the simulator, the summary

statistics outliers correspond to specific SNPs. Only the specific loci of SNPs that were detected by the outlier test are considered
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as potentially under selection when simulating data sets for ABC. The rest of the loci (non-outliers) are fixed to as no selection,
i.e. 𝑠𝑖 = 0.

Sample 𝐹𝑆𝑇 is not a sufficient statistic for any parameter of a divergent selection model since large values of sample 𝐹𝑆𝑇 are not
only the result of divergent selection. Sample 𝐹𝑆𝑇 from expression (6) measures genetic variation among sampled populations by
assessment of variance between and within sampled populations by calculating allele frequency differences. The sample 𝐹𝑆𝑇 values
have been found to be correlated with the recombination rate [28]. Recombination rate between loci and the number of generations
of recombination influence LD decay with genetic distance. Under a neutral evolution model, genetic drift is the only driving force
of changes in allele frequencies. Many generations will be required for a new variant to reach a high frequency, and the surrounding
LD will decay due to recombination events [29–31].

In our paper we test an LD-based summary statistic – Cross Population Extended Haplotype Homozygosity (𝑋𝑃 −𝐸𝐻𝐻) [32,33]
– along with the sample 𝐹𝑆𝑇 . In order to derive sample 𝑋𝑃 − 𝐸𝐻𝐻 , one must first calculate Extended Haplotype Homozygosity
(𝐸𝐻𝐻) summary statistics for each population.

The 𝐸𝐻𝐻 between two loci is defined as the probability that the number of distinct haplotypes 𝐺𝑣 in a genomic region up to
a distance 𝑣 from the locus are equal to each other. For 𝑁𝑒 carriers per population with possible alleles of either 0 or 1 per locus,
with each group 𝑧, 𝑧 = 1, 2,… , 𝐺𝑣, having 𝑛𝑧 haplotypes, 𝐸𝐻𝐻 is:

𝐸𝐻𝐻(𝑣) =

∑𝐺𝑣
𝑧=1

(𝑛𝑧
2

)

(𝑛0
2

)

+
(𝑛1
2

) (7)

[34]. At distance, 𝑣 = 0 the 𝐸𝐻𝐻(𝑣 = 0) for each locus with respect to itself is always 1 and the 𝐸𝐻𝐻(𝑣) values decay as the 𝑣
increases, which is the decay of LD from each core haplotype [32,35]. The 𝑋𝑃 −𝐸𝐻𝐻 , compares the integrated extended haplotype
homozygosity, 𝐸𝐻𝐻 , between two populations [32,34]. Specifically, 𝑋𝑃 −𝐸𝐻𝐻 is the ratio of the 𝐸𝐻𝐻 between populations 𝑿
and 𝒀 integrated over the genome. If recombination rates in the model were allowed to vary widely across the genome between
and within populations, the 𝐸𝐻𝐻 statistic can be interpreted as a measure of selection only after suitable normalization [34,36].
Our model assumes a mean recombination rate for simulated 𝐿 SNPs, thus normalization is not required in our model.

Calculating 𝐸𝐻𝐻(𝑣) values for locus 1 to 𝐿, and corresponding distances 𝑣 0 to 𝐿− 1, it yields an 𝐿 by 𝐿 symmetric matrix for
each of the two populations. The 𝑋𝑃 − 𝐸𝐻𝐻 then for population 𝑿 and 𝒀 combined for each locus is just a vector of length 𝐿,
and is given by:

𝑋𝑃 − 𝐸𝐻𝐻(𝑣) = log

(

∫𝐷 𝐸𝐻𝐻𝑝𝑜𝑝𝑋 (𝑣)d𝑣

∫𝐷 𝐸𝐻𝐻𝑝𝑜𝑝𝑌 (𝑣)d𝑣

)

. (8)

The integration domain 𝐷 is a cut-off threshold below which the 𝐸𝐻𝐻 values are set to 0.0, for which we pick 𝐷 of 0.05 [35,37].
The 𝑋𝑃 −𝐸𝐻𝐻 has the advantage of detecting selection on alleles that near fixation in one population but not both, population 𝑿
nd 𝒀 [34]. This fits our model where the population 𝑿 evolves under the positive or negative selection with respect to population
, with occasional gene flow between two populations during migration generations.

.2. Assessment of summary statistics

Following the outlier scan on the summarized observed data set (𝐹𝑆𝑇 statistic) outside of the 95% of all 𝐹𝑆𝑇 values as described in
he previous subsection, only the outlier loci in the data sets simulations identified by the outlier scan are considered as potentially
nder selection, with selection coefficients at non-outlier loci fixed to 0, and only the summary statistics corresponding to loci
dentified by outlier scan are inputted to Algorithm 1 and Algorithm 2. We assess the performance of summary statistics in terms of
ow well they capture the signal of observed selection coefficients by using the summary statistics in the ABC, then calculating the
tandard deviation of posterior distributions of selection coefficients, and mean square errors (MSEs), variance and squared-bias.
e compare performance of the following summary statics: 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 , 𝑋𝑃 − 𝐸𝐻𝐻 , 𝑝𝑋 − 𝑝𝑌 , and 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 with 𝑋𝑃 − 𝐸𝐻𝐻 . We

plot SNPs vs. MSE, observed selection coefficients vs. MSE, SNPs vs. squared-bias, observed selection coefficients vs. squared-bias,
SNPs vs. variance, observed selection coefficients vs. variance, for the four summary statistics combinations, and for the mode of
reproduction and migration rate in Section 5.

In our model 𝑝𝑋 and 𝑝𝑌 represent allele frequency per locus in sampled population 𝑿 and 𝒀 respectively, such that 𝑝𝑋 − 𝑝𝑌
s the difference between the allele proportions per locus between the two populations, with the expected value of zero for the
ounding 𝐹2 populations, i.e. at generation 𝑡 = 0. Additionally to testing the performance of summary statistics from the outlier scan
n summarized observed data described above, we assessed the effect of genetic drift and found that the population size is large
nough for genetic drift not to be an issue as the mean of 100,000 data sets converge to the deterministic model, as verified by
imulations. Due to the convergence of the mean of 100,000 data sets and the expected value from the deterministic model, we
etermined most informative summary statistics performed of simulator output data (𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙) on the deterministic model based on
he MSEs. We derived a summary statistic called 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 : 𝐢𝐟 (𝑝𝑋 −𝑝𝑌 ) < 0, 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 = −𝐹𝑆𝑇 , 𝐞𝐥𝐬𝐞 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 = 𝐹𝑆𝑇 . Due to the strong fit
f superimposed plots of simulations and deterministic values [38], we evaluated 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 , 𝐹𝑆𝑇 , and (𝑝𝑋−𝑝𝑌 ) based on deterministic
ingle locus model. We performed 1000 ABC tests with a tolerance rate of 0.1%. For each of the ABC iterations, a single simulated
ata set with known parameters was randomly drawn from the 100,000 data sets and assumed as observed data set. For each, the
op 0.1% of data sets with the smallest Euclidean distances between observed and simulated summary statistics were accepted. On
verage of the 1000 ABC iterations, the lowest error was achieved with 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 (𝑀𝑆𝐸 = 5.50 × 10−8). We compared ABC results
o empirical results from the simulator from 100,000 simulations and achieved on average 𝑀𝑆𝐸 = 2.00 × 10−3 with 𝑠𝑖𝑔𝑛𝐹 and
𝑆𝑇

8
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𝑀𝑆𝐸 = 1.10 × 10−2 with (𝑝𝑋 − 𝑝𝑌 ). We also examined parameter space via plots of 𝑠𝐿∕2 vs. summary statistics and the relations are
more often 1:1 with 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 than with (𝑝𝑋 − 𝑝𝑌 ). In Section 5 we address 𝑋𝑃 −𝐸𝐻𝐻 and 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 and expand it to a much larger
scope of parameter space.

4.3. Inference about model parameters

We estimate the free model parameters in 𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍|𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒔;𝑲) given by expression (5), using an ABC-rejection algorithm
(Algorithm 1) and the ABC with the linear regression adjustment (Algorithm 2). The term 𝒙 represents, the data from our bi-allelic
SNPs of individuals in two populations. The simulated SNPs are 𝑁𝑒×𝐿 matrices per population represented by 𝒙, and 𝒙 summarized
by summary statistics 𝑆𝑢𝑚𝑆𝑡𝑎𝑡 by mapping 𝑺𝒖𝒎𝑺𝒕𝒂𝒕 = 𝑆(𝒙). The 𝑛𝑠𝑖𝑚 observations denoted by 𝒙 generated from the model are
ndependent and identically distributed, i.i.d. The 𝒙 ∈  , where  is the space in which the data sits.

ABC makes two approximations, the first one is the mapping of 𝒙 to 𝑺𝒖𝒎𝑺𝒕𝒂𝒕, and the second is accepting summary statistics
𝑺𝒖𝒎𝑺𝒕𝒂𝒕 within a tolerance rate from the observed 𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔. The simulations are a mechanistic process that involves random
sampling, which can be thought of as an influence of stochastic processes such as genetic drift. The ABC facilitates in model
parameters estimation by accepting parameters corresponding to summarized data sets within a tolerance rate that is partly
due to the stochastic effect. The ABC outputs a posterior distribution of accepted parameters 𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍|𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒎;𝑲), 𝑚 ∼
Discrete Unif[𝑠𝑒𝑡𝑚], where 𝑠𝑒𝑡𝑚 ∈ [0, 1]. In the ABC-rejection (Algorithm 1) we calculate the Euclidean distance 𝑑𝑖, 𝑖 = 1, 2,… , 𝑛𝑠𝑖𝑚
echnique for each of the simulated and summarized by the summary statistics data set [39,40] to scale summary statistics across
he 𝑛𝑠𝑡𝑎𝑡 dimensional space. The summary statistics are standardized by the median absolute deviation 𝑆𝐷, 𝑗, 𝑗 = 1, 2,… , 𝑛𝑠𝑡𝑎𝑡, such
hat each of the 𝑛𝑠𝑡𝑎𝑡 summary statistics per dimension approximately equally contribute to the ABC analysis. Further details on the
uclidean distance are described in Appendix A.

Algorithm 1 ABC-rejection algorithm for summary statistics calculated from data sets simulated from the Simulator and their
corresponding parameters from the prior distribution. Input: proportion of simulations to accept, number of simulated data sets,
number of summary statistics per simulation.

1: Input: tolerance rate, number of simulations, number of summary statistics.
2: Input parameter values. ⊳ Parameter values sampled from the prior (Table 1).
3: Sample the model (Fig. 1). ⊳ Sampled from the Simulator.
4: Calculate summary statistics.
5: Calculate Euclidean distances between simulated and observed summary statistics.
6: Accept 𝑀 data sets with the smallest Euclidean distances.
7: Return 𝑀 accepted data sets.

Following the rejection algorithm, we applied the linear regression correction to compare ABC performance with and without
inear regression correction. The input of the ABC-linear regression is the output of the ABC-rejection. In ABC-rejection we assign
eights 𝑤𝑚 to accepted data sets from ABC-rejection [41]. The weight 𝑤𝑚 for each of accepted pairs from Algorithm 1 output are

calculated using kernel 𝜅𝑑𝑀 (𝑑𝑚) [42], where 𝑑𝑚 is the 𝑚th smallest Euclidean distance between standardized accepted summary
statistics (𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒎 𝒔𝒄𝒂𝒍𝒆𝒅) and standardized observed summary statistics (𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅), and 𝑑𝑀 > 0 is the bandwidth
parameter [43], in this case the largest of 𝑀th Euclidean distance, order ⟨𝑑1, 𝑑2,… , 𝑑𝑛𝑠𝑖𝑚⟩ [𝑀]. The purpose of the kernel weights
calculations is to apply in the calculation of weighted least squares regression coefficients �̂�𝑊𝐿𝑆 for the linear regression correction
nalysis in Algorithm 2, where the accepted data set with smallest Euclidean distance 𝑑𝑖 from Algorithm 1 output is adjusted the least
nd the accepted data set with largest 𝑑𝑖 out of the 𝑀 accepted is adjusted the most. The beta estimates vector is an approximate
raw from the posterior. In our ABC-linear regression correction, the user can choose to calculate the kernel weights either based on
aussian [41,44], or Epanechnikov [45] kernel and we later show in the results that the two kernels are similarly as effective. Further
etails on kernels, kernel weights, weighted least squares coefficients, and adjustment of accepted data sets parameter estimates are
escribed in Appendix A.

The ABC-linear regression correction steps are shown in Algorithm 2.

Algorithm 2 ABC-linear regression correction algorithm performed on the output of the ABC-rejection. Input: standardized
observed summary statistics, 𝑀 accepted standardized summary statistics with corresponding 𝑀 accepted parameters from
ABC-rejection.

1: Input: standardized observed summary statistics, 𝑀 accepted standardized summary statistics with corresponding 𝑀 accepted
parameters.

2: Calculate kernel weights. ⊳ Calculate each of 𝑀 weights based on kernel type.
3: Calculate weighted least squares regression coefficients.
4: Return adjusted parameter values from the linear regression adjustment.
9
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5. Results

5.1. Overview

Below we describe two methods for estimating strength of selection under four migration (𝑚) and mode of reproduction (𝑠𝑒𝑥)
ombinations, and 0,1, or 2 loci under selection combinations.

In the 1stmethod we describe, 𝑡∗ and 𝑡𝑓𝑖𝑛𝑎𝑙 are fixed 5 and 19 respectively, and the selection coefficients conditional on locus span
n 𝑠𝑖|𝐼 = 𝑖 ∼ Unif[-0.25,0.25] (see Section 3.2). The parameter space for loci under selection is at genomic locus corresponding to
NP number that can only take on values on {𝐿∕3, 𝐿∕2, 2𝐿∕3}. An advantage for this method is no need for the initial summary

statistic outlier scan (as described in Section 4.1) which would require simulation of 𝑛𝑠𝑖𝑚 = 100, 000 data sets per observed data set,
with parameter space of potential loci under selection reduced to those identified by the outlier scan. In Section 5.2 and Section 5.2.1
we describe and perform an ABC analysis for each of total of 𝑛𝐴𝐵𝐶 = 10,000 observed data sets, where we re-use simulated same
𝑛𝑠𝑖𝑚 = 100, 000 data sets for each analysis. We plot observed 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics for all 10,000 observed data sets and
visually represent how the parameter space for the strength of selection differs depending on migration and mode of reproduction
combinations (Fig. 3), and depending on number of loci under selection (Fig. 4). To reduce the complexity of variable parameters, we
visually verify of this, simplified method case that ABC-linear regression correction estimation outperforms ABC-rejection estimation,
and that there is no difference in performance of ABC-linear regression with Gaussian kernel versus with Epanechnikov kernel
(Appendix C).

In the 2nd method, we performed four scenarios total of 𝑡∗, 𝑡𝑓𝑖𝑛𝑎𝑙, number of SNPs 𝐿, recombination rate 𝑟, and parameter
space of selection conditional on locus 𝑠𝑖|𝐼 = 𝑖 combinations (see Table 2), unlike where in 1st method we performed only one
combination. Additionally, we build on the technique from the 1stmethod by allowing the loci under selection of the observed data
to span anywhere between locus corresponding to SNP 1 to 𝐿, then performing outlier scan as described in Section 4.1 which
requires simulation of 𝑛𝑠𝑖𝑚 = 100, 000 data sets per observed data set. Based on the results from the 1st method about ABC-rejection
versus ABC-linear regression, and corresponding ABC-linear regression two kernels, we performed analysis only with ABC-linear
regression (after the ABC-rejection but without comparing to ABC-rejection) and compare ABC performance with four summary
statistics combinations instead of one like in the 1st method, and found that 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics in ABC analysis is has
low squared-bias and variance between observed and median accepted posterior selection parameters relative to the other three
summary statistics combinations (Fig. 9).

5.2. Observed data, model simulations, and ABC for fixed potential loci under selection

In this 1st method, we assessed how the signal of selection from summary statistics changes when the mode of reproduction,
strength of migration, as well as number of loci under selections change. As Wright’s fixation index [25] measures the allele
frequency differentiation among sampled populations [26] of sequenced data, and demographic history of Saccharomyces cerevisiae
has been reported to play a role in gene expansion and contraction based on phylogeny reconstruction [46], here we investigate
this demographic history and its effect on signature of selection.

For this, we assessed signal strength equivalent to scenario 1 for the 2nd method from Table 2 but for 10,000 ABC iterations
(𝑛𝐴𝐵𝐶 = 10, 000) and without the initial outlier scan on summarized observed data. This method has a computational time advantage
as instead of simulating unique 100,000 (𝑛𝑠𝑖𝑚 = 100, 000) data sets per one observed data, the simulated data sets are re-used. We
present the results with 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics based on ABC-linear regression with Gaussian kernel (see Fig. 5, and Fig. 6),
but we also compare performance of Gaussian versus Epanechnikov kernels, Gaussian kernel versus rejection, and Epanechnikov
kernel versus rejection (see Appendix C).

The details of the experimental design of parameter space are described below.

5.2.1. Experimental design of parameter space
The experimental design of the parameter space which was the same as for scenario 1 in Table 2 is as follows: for 𝐿 = 100

SNPs, with recombination rate of 3.0 × 10−4 Morgans/bp. The expected number of crossovers was 𝜇𝑛𝑟 = 4.95 and average spacing of
polymorphic sites on the genome every 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 165 sites as those we used in scenario 4 (Table 1, and Table 3 in Appendix A),
resembling a biological yeast system where YPS128 and DBVPG1106 yeast strains of 12Mb genome length differ by over 70,000
SNPs or 1 SNP per ∼ 165 bp [8], as described in Section 2.1. The migration rate was randomly chosen to be 0.0, 0.2, or 0.5, sexual
or asexual reproduction during migration generation. The migration generation cycles (𝑛𝑐𝑦𝑐𝑙𝑒𝑠 = 4) took place every fifth generation
(𝑡∗ = 5) for total of 𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠𝑡∗ −1 = 19 generations. Both, the observed and simulated data can have either 0, 1, or 2 loci under
selection with prior parameter space of selection coefficients conditional on locus 𝑠𝑖|𝐼 = 𝑖 ∼ Unif[−0.25, 0.25].

The experimental design part that differed from scenario 1 was: We performed 10,000 ABC iterations instead of 100. Out of the
otential 0, 1, or 2 loci under selection, the possible loci that the selection could act on were {𝐿∕3, 𝐿∕2, 2𝐿∕3}, more specifically
33rd SNP, 50th SNP, 67th SNP}. For this small set of the only possible loci under selection, no outlier scan on observed summarized
ata was performed, which enabled us to re-use the same 100,000 simulated data sets for the ABC iterations.

The experimental design of the parameters space for selection coefficients and rates of migration, with possible models of
eproduction during migration generations of the model are seen in Fig. 2.

For the signature of the strength of selection due to mode of reproduction and strength of migration, we have evaluated 𝑠𝑖𝑔𝑛𝐹𝑆𝑇
ummary statistic of each of 10,000 observed data sets under four variable modes of reproduction (𝑠𝑒𝑥) and strength of migration
10
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Fig. 2. Possible parameter space of selection coefficients for the 1st method, i.e. without the initial outlier scan on summarized observed data. Scheme of selection
coefficients conditional on genome loci (𝑠𝑖|𝐼 = 𝑖), rates of migration (𝑚), and possible modes of reproduction during migration generations (𝑠𝑒𝑥). The positions
nder selection can only take on values on {𝐿∕3, 𝐿∕2, 2𝐿∕3}, being able to re-use the same 𝑛𝑠𝑖𝑚 = 100, 000 data sets for the ABC iterations.

𝑚) combinations: 𝑠𝑒𝑥 = 0 and 𝑚 = 0, 𝑠𝑒𝑥 = 1 and 𝑚 = 0, 𝑠𝑒𝑥 = 1 and 𝑚 = 0.2, 𝑠𝑒𝑥 = 1 and 𝑚 = 0.5, while equally probable seven
ombinations of 0,1,2 loci under selection within a set of {𝐿∕3, 𝐿∕2, 2𝐿∕3} possible SNP loci (see Fig. 2). In Fig. 3 we see a visible
attern in an increase in summary statistics values away from 0 (𝑠𝑖𝑔𝑛𝐹𝑆𝑇 = 0 when the fixation index 𝐹𝑆𝑇 = 0) at selected loci with
decrease in migration rate, and increase in genetic hitchhiking effect with an asexual mode of reproduction (𝑠𝑒𝑥 = 0) given same
of 𝑚 = 0.0 as the recombinational distance from the loci under selection is absent.
For the signature of strength of selection due to a variable number of loci under selection, we have evaluated 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary

tatistic of each of 10,000 observed data sets where 0, 1, and 2 loci are under selection within a set of {𝐿∕3, 𝐿∕2, 2𝐿∕3} possible
NP loci, while equally probable four combinations of mode of reproduction and migration described above (see Fig. 2). In Fig. 4
e see a visible pattern in summary statistics values closest to 0 for no loci under selection, increase in the magnitude of summary

tatistics values away from 0 at single locus under selection, and in-between the magnitude of summary statistics values away from
and increase in genetic hitchhiking effect for two loci under selection.

In Fig. 3 we see a break down of LD when recombination rate is present versus absent, given no migration rate, and in Fig. 4
e see more break down in LD for one locus under selection instead of two loci, given same average genomic recombination rate,
hich is consistent with recombination as the primary source of LD break down [7].

To further examine the signature of LD decay and distance between loci under selection, given fixed average genomic
ecombination rate, we looked at cases with loci under selection in closer proximity to each other. We evaluated effect of number
f loci and distance between loci under selection for two loci cases, i.e. four combinations: none, one locus, two loci 𝐿∕6 distance
part, and two loci 𝐿∕3 distance apart, as well as each of seven loci combinations, i.e: none, 𝐿∕3, 𝐿∕2, 2𝐿∕3, (𝐿∕3, 𝐿∕2), (𝐿∕3, 2𝐿∕3),

(𝐿∕2, 2𝐿∕3) but we could not distinguish visually further differences than those seen in Fig. 4 in observed summary statistics values
due to position (seven combinations), nor the distance (four combinations) (see Appendix C).

In order to answer the question how well the signal we recover the signal of strength of selection, with variable selection
oefficients priors, when the mode of reproduction, strength of migration, and number of loci under selection change, we evaluated
he bias and the variability in the estimates of selection coefficients from the ABC. For this, we plotted the true observed selection
oefficients versus: posterior medians, MSEs between true observed versus median of posteriors, variance of the posterior medians,
nd bias squared between true observed and posterior medians based on the ABC-linear regression Gaussian kernel. We picked
aussian kernel because the PoPoolation software – a pipeline for analyzing pooled next generation sequencing data [47] – uses
aussian kernel smoothing [48]. We assessed them based on four modes of reproduction and migration combinations, and based
n number of loci under selection. For the mode of reproduction and migration (Fig. 5), we see a positive relationship between the
agnitude of true observed selection coefficient values for strongest migration rate (𝑚 = 0.5) and variance as well bias (squared),
ith high migration rate contributing to opposing the effect of divergent selection. For the same range of selection coefficient values,

he range of summary statistic values is small of data generated with high 𝑚, in compare to low 𝑚 (Fig. 3). The signal of the strength
f divergent selection also diminishes with number of loci under selection. In (Fig. 6), we see a positive relationship between the
agnitude of true observed selection coefficient values for two loci, and variance as well bias (squared).

We also assessed Gaussian kernel performance with respect to Epanechnikov, ABC-rejection (Algorithm 1) versus Gaussian, and
BC-rejection (Algorithm 1) versus Epanechnikov. We compared to Epanechnikov kernel, and ABC-rejection and found no visual
ifference between kernel types, but an improvement in selection coefficient estimations for both Gaussian and Epanechnikov in
omparison to ABC-rejection (Appendix C).
11
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Fig. 3. SNP loci vs. 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics for the 1st method, i.e. without the initial outlier scan. Plots for each of 10,000 simulator output data sets
assumed as observed under four of migration (𝑚) and mode of reproduction (𝑠𝑒𝑥) combinations selected randomly with equal probability: 𝑠𝑒𝑥 = 0 and 𝑚 = 0.0
n yellow, 𝑠𝑒𝑥 = 1 and 𝑚 = 0.0 in red, 𝑠𝑒𝑥 = 1 and 𝑚 = 0.2 in turquoise, 𝑠𝑒𝑥 = 1 and 𝑚 = 0.5 in black, and selected randomly with equal probability scenarios
f loci under selection as seen in Fig. 2. A visible pattern is shown of an increase in summary statistics values away from 0 at selected loci with a decrease
n migration rate, and an increase in genetic hitchhiking effect with an asexual mode of reproduction (𝑠𝑒𝑥 = 0) (absence of recombination) given same 𝑚 of
= 0.0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. SNP loci vs. 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics for the 1st method, i.e. without the initial outlier scan. Plots for each of 10,000 simulator output data sets
assumed as observed under four of migration (𝑚) and mode of reproduction (𝑠𝑒𝑥) combinations selected randomly with equal probability scenarios of loci under
election: none in black, one locus (𝐿∕3, or 𝐿∕2, or 2𝐿∕3) in red, two loci (𝐿∕3 with 𝐿∕2, or 𝐿∕3 with 2𝐿∕3, or 𝐿∕2 with 2𝐿∕3) in blue, as seen in Fig. 2.

visible pattern is shown of summary statistics values closest to 0 for no loci under selection, largest magnitude in summary statistics values away from 0 at
ingle locus under selection, and in-between the magnitude of summary statistics values away from 0 and increase in genetic hitchhiking effect for two loci
nder selection (lower observed frequency of recombination events between two loci under selection at a confined distance apart). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. True parameter value under which the observed parameter is generated (x-axis) vs. median, MSE, variance, bias-squared for (𝐿∕3)th, (𝐿∕2)th and (2𝐿∕3)th
NP respectively for the 1st method, i.e. without the initial outlier scan, from 𝑛𝐴𝐵𝐶 = 10,000 ABC tests, based on 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics from Algorithm 2
ith Gaussian kernel. Colors based on four migration (𝑚) and mode of reproduction (𝑠𝑒𝑥) combinations of observed data sets: 𝑠𝑒𝑥 = 0 and 𝑚 = 0.0 in yellow;
𝑒𝑥 = 1 and: 𝑚 = 0.0 in red, 𝑚 = 0.2 in turquoise, 𝑚 = 0.5 in black. A pattern is shown of a positive relationship between the magnitude of true observed selection
oefficient values for highest migration rate (𝑚 = 0.5), and variance as well bias (squared), with decreased signature of selection at high migration rate. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. True parameter value under which the observed parameter is generated (x-axis) vs. median, MSE, variance, bias-squared for (𝐿∕3)th, (𝐿∕2)th and (2𝐿∕3)th
NP respectively for the 1st method, i.e. without the initial outlier scan, from 𝑛𝐴𝐵𝐶 = 10,000 ABC tests from 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 summary statistics from Algorithm 2 with
aussian kernel. Colors based on three combinations of number of loci under selection of observed data sets: none in black, one locus in red, and two loci in
lue. A pattern is shown of a positive relationship between the magnitude of true observed selection coefficient values for two loci, and variance as well bias
squared), with greater genetic hitchhiking effect on two loci under selection. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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5.3. Observed data, model simulations, and ABC for potential loci under selection identified by outlier scan

In the 2nd method, to answer question how expansion of the parameter space for the positions of loci under selection contributes
o accuracy in estimation of selection coefficients, we performed ABC evaluations for estimating strength of selection for model
cenarios described in Table 2. The observed data sets had randomly selected 0, 1, or 2 loci under selection, and randomly selected
oci under selection along SNP loci 1 to 𝐿 (see Model section on parameter methodology). We identified candidates for loci under

selection on the 𝑛𝐴𝐵𝐶 observed data sets via the outlier scan using the 𝐹𝑆𝑇 summary statistic (see Section 4.1) first, followed by the
model simulations, then ABC.

We performed a total of four scenarios. For scenarios 1–3, we simulated same number of SNPs, average recombination rate, as
described in 1st method in sub- Section 5.2.1, and with same expected number of crossovers and average spacing of polymorphic
sites on the genome equivalent to the biological yeast system as in scenario 4 (Table 1, and Table 3 in Appendix A). Because
of relatively low number of SNPs simulated, which referred which required lower computational time per simulated data set, we
performed 100 ABC iterations (𝑛𝐴𝐵𝐶 ), which translated into 100 observed data sets (one ABC iteration per one observed data set),
with 𝑛𝑠𝑖𝑚 = 100, 000 unique data sets simulated conditional on outlier scan on potential locus under selection per each observed
data set.

For scenario 1, the migration-selection cycle occurred every 𝑡∗ = 5 generations, with total number of cycles 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 = 4, and final
generation 𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠𝑡∗ − 1 = 19. The prior parameter space of selection conditional on locus is 𝑠𝑖|𝐼 = 𝑖 ∼ Unif[−0.25, 0.25].
This parameter space implies that if an overall population fitness 𝜔 is 𝜔 = 1 at 𝑡 = 0, that is the average fitness of all carriers
1
𝑁𝑒

∑𝑁𝑒
𝑛=1 𝜔𝑛 = 1 at 𝑡 = 0, for extreme strength of selection if a carrier of one locus under selection has 𝑠𝑖|𝐼 = 𝑖 = −0.25 or

𝑖|𝐼 = 𝑖 = 0.25, it has 25% lower or higher fitness respectively than the population average at 𝑡 = 0. For two loci under selection,
his translates to 50% lower or higher fitness respectively than the population average at 𝑡 = 0.

For scenario 2, the only parameters that differ from scenario 1 is the length of the selection cycle 𝑡∗ = 50, a 10-fold increase
rom scenario 1, and the prior parameter space of selection conditional on locus is 𝑠𝑖|𝐼 = 𝑖 ∼ Unif[−0.025, 0.025], a 10-fold decrease
rom scenario 1, as one would expect fixation to reach slower with weaker selection.

For scenario 3, the only parameter that differs from scenario 2 is number of cycles 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 = 2, thus final generation 𝑡𝑓𝑖𝑛𝑎𝑙 =
𝑐𝑦𝑐𝑙𝑒𝑠𝑡∗ − 1 = 99. This scenario is to test whether the tested number of mixing (migration) times plays a significant role in the
ignature of selection in comparison to scenario 2.

For scenario 4, the recombination rate resembles closer to a genomic recombination rate of sequenced yeast data. The average
ecombination rate of Saccharomyces cerevisiae has been reported 3.5×10−6 Morgans/bp in the literature [9], with inferred genome-
ide recombination profiles from sequenced isolates from an advanced intercross line (AIL) to be as high as 3.0×10−5 Morgans/bp for
two-way cross at genome hotspots [10]. Here, for the scenario resembling sequenced yeast, we fixed genome recombination rate
f 𝑟 = 2.0×10−5 Morgans/bp, a realistic value for recombination hotspots in yeast [10]. The simulated number of SNPs for scenario 4
or the genomic chunk is 𝐿 = 1, 500, around an average number of SNPs of a yeast cross for one-third a chromosome [8], which still
olds true that the expected number of cross-over events is 𝜇𝑛𝑟 = 4.95 (Table 1, and Table 3 in Appendix A) as for scenarios 1–3, and
s for the non-outlier scan earlier scenario with smaller parameter space of potential loci under selection ({𝐿∕3, 𝐿∕2, 2𝐿∕3}). The
ior parameter space of length of selection cycles, number of cycles (and thus final generation), and selection coefficients conditional
n loci are equivalent to scenario 2 (𝑡∗ = 50, 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 = 4, 𝑡𝑓𝑖𝑛𝑎𝑙 = 𝑛𝑐𝑦𝑐𝑙𝑒𝑠𝑡∗ − 1 = 199, 𝑠𝑖|𝐼 = 𝑖 ∼ Unif[−0.025, 0.025]). Due to longer
omputational time because we simulated more SNPs in scenario 4 than in scenarios 1–3, we picked 10 instead of 100 data sets as
bserved and thus performed 𝑛𝐴𝐵𝐶 = 10 instead of 𝑛𝐴𝐵𝐶 = 100 ABC iterations.

Full list of scenarios with initial outlier scan for which the evaluations were performed are described in Table 2. The Fig. 7 and
ig. 8 show the summary statistics of observed data sets based on mode of reproduction and migration, and number of loci under
election respectively for each of the four scenarios. The ABC performance of MSE, variance and squared-bias between true selection
arameter values under which the data are generated, and the values of posterior distributions for each of the four scenarios are
hown in Fig. 9. In ABC analysis estimators are set to medians of the posterior distributions.

Table 2
Scenarios under which the initial parameters varied for the model simulations and ABC, with parameter values in blue that are unique to particular scenario,
and those in black that are shared with at least one other scenario.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 (sequenced
yeast data)

Varying Parameters
𝐿 = 100,
𝑟 = 3.0 × 10−4, 𝑡∗ = 5,
𝑡𝑓𝑖𝑛𝑎𝑙 = 19, 𝑠𝑖|𝐼 = 𝑖 ∼
Unif[−0.25, 0.25]

𝐿 = 100, 𝑟 = 3.0 × 10−4,
𝑡∗ = 50, 𝑡𝑓𝑖𝑛𝑎𝑙 = 199,
𝑠𝑖|𝐼 = 𝑖 ∼
Unif[−0.025, 0.025]

𝐿 = 100, 𝑟 = 3.0 × 10−4,
𝑡∗ = 50, 𝑡𝑓𝑖𝑛𝑎𝑙 = 99,
𝑠𝑖|𝐼 = 𝑖 ∼
Unif[−0.025, 0.025]

𝐿 = 1, 500,
𝑟 = 2.0 × 10−5, 𝑡∗ = 50,
𝑡𝑓𝑖𝑛𝑎𝑙 = 199, 𝑠𝑖|𝐼 = 𝑖 ∼
Unif[−0.025, 0.025]

Total number of ABC
iterations (𝒏𝑨𝑩𝑪 )

100 100 100 10

Total number of
simulated data sets for
all ABC iterations
(𝒏𝑨𝑩𝑪 × 𝑛𝑠𝑖𝑚)

10 million 10 million 10 million 1 million

Out of the four scenarios, we see strongest pattern of observed summary statistics for scenario 1, where the range of selection
oefficients is 10-fold greater, with 10-fold shorter migration-selection cycles, characterized by sharp peaks (Fig. 7 and Fig. 8). We
lso see that the observed 𝑋𝑃 −𝐸𝐻𝐻 is almost exclusively positive. From expression (8) with population 𝑿 in the numerator and
16
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population 𝒀 in the denominator, population 𝑿 and 𝒀 are modeled under selection and under neutrality respectively. The numerator
is larger due larger sum of the extended haplotype homozygosity decay around the locus the selection is acting on. LD-based statistic
𝑋𝑃−𝐸𝐻𝐻 has been shown to be more effective when one variant of allele is near fixation within one population [49,50]. In scenario
1 with stronger selection, and shorter migration-selection cycles, the genetic drift is expected to have smaller effect proportionally
to strength of selection and length of migration-selection cycles. With absent migration (𝑚 = 0), a build-up of selection over time is
expected to occur, and a break down of LD when recombination is present (𝑠𝑒𝑥 = 1) instead of absent (𝑠𝑒𝑥 = 0), shown most clearly
n our results with 𝑋𝑃 − 𝐸𝐻𝐻 .

For scenario 4 (resembling a biological yeast system), where 15-fold larger number of SNPs are simulated than for scenarios 1–3,
e see peaks of observed summary statistics values with more stochastic effect between the SNPs unlike a more smooth pattern

n observed summary statistics of neighboring SNPs in scenarios 1–3. This pattern resembles more so the pattern of the level of
eterozygosity [51] on domestication and divergence of S. cerevisiae, and less so in scenarios 1–3.

Our results presented show some difference in genetic divergence dependent on number of mixing cycles. We see larger range
f observed summary statistics values for scenario 2 compared to scenario 3, with four migration-selection cycles instead of two.
he observed summary statistics values deviate the most from zero for data generated under no migration in both scenarios, where
he process of genetic drift and/or divergent selection affects the accumulation genetic differences [52].

Besides the differences in patterns of observed summary statistics between the scenarios, we see a consistent pattern across the
cenarios. The lowest level of divergence, expressed as the lowest magnitude of observed summary statistics, is seen for the strongest
ate of migration for all summary statistics (Fig. 7), and no loci under selection (Fig. 8) for 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 and (𝑝𝑋 − 𝑝𝑌 ).
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Fig. 7. SNP loci vs. observed summary statistics for the 2nd method, i.e. each of four scenarios with initial outlier scan, (Table 2). Simulator output data sets
assumed as observed under four of migration (𝑚) and mode of reproduction (𝑠𝑒𝑥) combinations selected randomly with equal probability: 𝑠𝑒𝑥 = 0 and 𝑚 = 0.0 in
yellow; 𝑠𝑒𝑥 = 1 and: 𝑚 = 0.0 in red, 𝑚 = 0.2 in turquoise, and 𝑚 = 0.5 in black. Data selected randomly with equal probability scenarios of loci under selection.
A visible pattern is shown of summary statistics values closest to 0 for the strongest migration rate of 𝑚 = 0.5 across all scenarios, constraining the genetic
divergence. Clear summary statistics peaks shown in scenario 1, with smaller effect of genetic drift on strong selection, and with 𝑚 = 0 most clear pattern of LD
break down when 𝑠𝑒𝑥 = 1 instead of 𝑠𝑒𝑥 = 0 seen with 𝑋𝑃 − 𝐸𝐻𝐻 . Pattern of more stochastic effect between the peaks of summary statistics values between
neighboring SNPs seen in scenario 4, resembling more of heterozygosity pattern seen on a S. cerevisiae genome. A larger range of summary statistic values seen
or scenario 2 compared to scenario 3, with four migration-selection cycles instead of two. Colors of observed summary statistics labels correspond to colors of
lots in Fig. 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. SNP loci vs. summary statistics for the 2nd method, i.e. each of four scenarios with initial outlier scan, (Table 2). Simulator output data sets assumed
as observed under four of migration (𝑚) and mode of reproduction (𝑠𝑒𝑥) combinations selected randomly with equal probability scenarios of number loci under
election occuring within the loci identified by the outlier scan: none in black, one in red, and two blue. Clear summary statistics peaks shown in scenario 1,
ith smaller effect of genetic drift on strong selection. Pattern of more stochastic effect between the peaks of summary statistics values between neighboring
NPs seen in scenario 4, resembling more of heterozygosity pattern seen on a S. cerevisiae genome. A larger range of summary statistic values seen for scenario
compared to scenario 3, with four migration-selection cycles instead of two. A visible pattern of 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 and (𝑝𝑋 − 𝑝𝑌 ) values closest to 0 for no loci under

election across all scenarios. Colors of observed summary statistics labels correspond to colors of plots in Fig. 9. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. True parameter value under which the observed parameter is generated (x-axis) vs. median, MSE, variance, bias-squared for loci corresponding to SNP
for the 2nd method, i.e. determined by initial outlier scan, followed by simulation of data sets and ABC from Algorithm 2 with Gaussian kernel correction.
Colors based on four combinations of summary statistics inputted to ABC are described in the figure legend. Plots for four scenarios, where in scenario 1 the
range of selection coefficient is 10-fold larger ([−0.25, 0.25]): thus the 𝑦-axis of the posterior median is 10-fold larger, the MSE, variance and bias-squared is
10-fold)-squared larger than for scenarios 2–4. A pattern is shown of posterior median parameter values closest to true observed values based on 𝑠𝑖𝑔𝑛𝐹𝑆𝑇 ,
𝑝𝑋 − 𝑝𝑌 ), and (𝑠𝑖𝑔𝑛𝐹𝑆𝑇 , 𝑝𝑋 − 𝑝𝑌 ) for scenario 1, and least information captured with 𝑋𝑃 − 𝐸𝐻𝐻 .

After examining patterns of observed summary statistics by mode of reproduction with migration, and by number of loci under
election, we compared the ABC performance with these observed summary statistics by evaluating the variance of ABC posteriors,
quared-bias between of the posterior estimates and true observed parameters. We find a clear pattern of posterior estimates to be
ess biased for scenario 1, where the range of selection coefficients is 10-fold of those in scenarios 2–4, and where the migration-
election cycles are shorter (Fig. 9). Once explanation could be that short migration-selection cycles do not allow for the significant
uild-up of genetic drift, and/or that strong selection has too significant of effect for the genetic drift to act on the population. We
lso determine a pattern of 𝑋𝑃 − 𝐸𝐻𝐻 capturing least information about the signal of divergent selection, and discuss potential
xplanation in Section 6.2.
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6. Discussion

6.1. Application

By combining ABC methods that incorporate summary statistics on large simulation study from developed simulator, we present
n approach of estimating model parameters, which can bypass evaluation of exact likelihood function. We show it on simulations
ith variable migration rates, modes of reproduction, and number of loci under selection, where fixation index summary statistics
utperformed cross-population extended haplotype homozygosity in terms of precision and accuracy. We also recommend fixation
ndex over the LD-based statistic cross-population extended haplotype homozygosity, because calculating the linkage disequilibria
s computationally expensive [53].

Moreover, when considering evolutionary models of complex systems, they provide valuable insights into how systems adapt,
hange, and evolve [54]. These models, by simulating intricate interactions among diverse components, unlock crucial patterns
haping the adaptive nature of systems, thereby laying the groundwork for understanding where the strength of recovered signals
ies in representing divergent selection. An important question about the application of these methods is: for which part of the
arameter space of the model the recovered signal about the selection coefficients works well? In Fig. 9 scenario 1 for instance the
osterior median estimates of selection coefficients are closer to the values of the true observed selection coefficients in compare to
cenarios 2–4. In scenario 1, the migration-selection cycles are 10-fold smaller, and the selection coefficients range is 10-fold larger
hus affected less by the genetic drift, supporting that selection can only be assessed if it is high enough to outperform the effect
f genetic drift [55]. The shorter migration-selection cycles with overall less generations simulated, took less time to simulate. We
howed in scenario 4 that our model is scalable to recombination rate parameter resembling sequenced yeast data [10], with same
xpected number of recombination events Table 1, Table 3 in Appendix A) as for scenarios 1–3. If the parameter space of possible
oci under selection can be assumed to those in Fig. 2, a more robust number of ABC iterations on data resembling biological yeast
ecombination rate is feasible in terms of computational time.

.2. Recombination rate

A limitation of the study where the main focus was estimation of selection coefficients, was fixing the recombination rate to an
xpected number of 4.95 recombination events (Table 1, Table 3 in Appendix A) for recombination rates 3.0 × 10−4 Morgans/bp

and resembling biological data 2.0 × 10−5 Morgans/bp [10] for 100 and 1500 SNPs respectively. We fixed the recombination rate
to same for all simulations, such that the parameter 𝑟 represents the average recombination rate on the simulated genome section.
We explain out motive for fixing the recombination rate below.

With our model we attempted to estimate strength of selection with variable recombination rates of simulated data sets, however,
we were unable to get consistent estimates. While the buildup of LD (i.e. the correlation between nearby variants of alleles as opposed
to random association of alleles [56]) can be a result of several population genetic forces, recombination is the only primary method
to break it down [7]. The absence of recombination between sites under selection will reduce the overall effectiveness of selection,
a phenomenon known as the Hill-Robertson (HR) effect [7,57,58]. Our main focus was estimation of strength of selection, with
successfully applied variability in mode of reproduction, and in strength of migration, but not with variability in recombination
rate. As the 𝑋𝑃 − 𝐸𝐻𝐻 was least effective in estimation of selection with fixed recombination, and 𝑋𝑃 − 𝐸𝐻𝐻 has been used to
measure the haplotype lengths between two populations [32,33], we would expect 𝑋𝑃 − 𝐸𝐻𝐻 to perform better in estimation of
recombination without taking into account varying strength of selection, mode of reproduction and migration combined.

Future work direction would be an exploration of variable recombination rates.
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ppendix A

see Tables 4 and 5

Algorithm 3 Algorithm for population process given in Fig. 1. Input: Effective population sizes 𝑁𝑒, for 𝑿 and 𝒀 ; Genome size 𝐿,
for each individual; Vector of loci of selected sites, 𝑳𝒔; Vector of alleles at selected sites, 𝑎; recombination rate of parental
genomes, 𝑟; strength of selection per locus 𝑠𝑖; migration rate from population 𝑿 to population 𝒀 , 𝑚𝑋𝑌 ; migration rate from
population 𝑌 to population 𝑿, 𝑚𝑌 𝑋 ; migration event, between 𝑡∗ − 1 and 𝑡∗, SNP spacing on the genome, 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 (assumed
qually spaced SNPs). Parts I, II, A, B and C of Fig. 1 are performed on 2–5, 6–20, 21–30, 31–45, and 46–48 respectively.
1: Input: 𝑁𝑒, 𝐿,𝑳𝒔,𝒂∗ = (𝑎∗1 , 𝑎

∗
2 ,⋯ , 𝑎∗

‖𝑳𝒔‖
), 𝑟, 𝒔∗ = (𝑠∗1 , 𝑠

∗
2 ,⋯ , 𝑠∗

‖𝑳𝒔‖
), 𝑚𝑋𝑌 , 𝑚𝑌 𝑋 , 𝑡𝑚, 𝑠𝑒𝑥, 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔

2: I
3: Build 𝐹1:
4: Sample allele 𝑎 ∼ Discrete Unif[0, 1] and replicate 𝐿 times for each
5: genome carrier 𝑛, 𝑛 ∈ {1, 2,… , 𝑁𝑒} in 𝑿𝑭𝟏 and 𝒀𝑭𝟏 respectively
6: II
7: Build 𝐹2:
8: for 𝑗 in {𝑿,𝒀 } do
9: for 𝑛 in 1 to 𝑁𝑒 do

10: Sample with equal probability parent, 𝑝1 ∼ Discrete Unif[1, 𝑁𝑒] from 𝑿𝑭𝟏
11: Sample with equal probability parent, 𝑝2 ∼ Discrete Unif[1, 𝑁𝑒] from 𝒀𝑭𝟏
12: Sample number of recombination events independently of each other,
13: 𝑛𝑟 ∼ Bin(𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1, 𝑟)
14: Sample loci of recombination events,
15: 𝑳𝒓 ∼ Discrete Unif[𝑛𝑟, 𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1]
16: if 𝑟𝑣 ∼ Unif[0, 1] < 0.5 then
17: 𝑝1 reassigned to 𝑝2 and 𝑝2 reassigned to 𝑝1
18: end if
19: end for
20: end for
21: A
22: Selection, genetic drift, asexual reproduction at time 𝑡:
23: for 𝑗 in {𝑿,𝒀 } do
24: for 𝑛 in 1 to 𝑁𝑒 do
25: Calculate absolute fitness for each individual: 𝜔(𝑗,𝑡−1)

𝑛 =
∑

‖𝑳𝒔‖
𝑖=1

(

1 + 𝐈𝑛{𝑎𝑖∈(𝑗,𝑡−1)}𝑠𝑖
)

26: end for
27: Sample offspring 𝑁𝑒

(𝑗,𝑡) ∼ Multinomial(𝑁𝑒,𝒑),
28: where 𝒑 =

(

𝑝1, 𝑝2,… , 𝑝𝑁
)

29: and 𝑝𝑛 =
𝜔(𝑗,𝑡−1)
𝑛

∑𝑁𝑒
𝑛=1 𝜔

(𝑗,𝑡−1)
𝑛

30: end for
31: B
32: Migration, 𝑚𝑋𝑌 = 𝑚𝑌 𝑋 = 𝑚:
33: if 𝑚 > 0 then
34: Sample parents that migrate from 𝑿 to 𝒀 : 𝑝𝐼𝐷𝑋𝑌 ∼ Discrete Unif[1, 𝑁𝑒]
35: Sample parents that migrate from 𝒀 to 𝑿: 𝑝𝐼𝐷𝑌 𝑋 ∼ Discrete Unif[1, 𝑁𝑒]
36: Substitute leaving 𝑝𝐼𝐷𝑋𝑌 to migrating 𝑝𝐼𝐷𝑌 𝑋 in 𝑿
37: Substitute leaving 𝑝𝐼𝐷𝑌 𝑋 to migrating 𝑝𝐼𝐷𝑋𝑌 in 𝒀
38: else
39: No migration
40: for 𝑗 in {𝑿,𝒀 } do
41: if sex=1 then
42: Sexual reproduction, sample 𝑛𝑟 and 𝑳𝒓 (see II) from 𝑗
43: end if
44: end for
22



M. Lukaszewicz, O. Issaka Salia, P.A. Hohenlohe et al. Journal of Computational Mathematics and Data Science 10 (2024) 100091
45: end if
46: C
47: Selection, genetic drift, asexual reproduction at time 𝑡:
48: See A

Algorithm 4 ABC-rejection algorithm for summary statistics calculated from datasets simulated from the Simulator and their
corresponding parameters from the prior distribution. Input: proportion of simulations to accept 𝑡𝑜𝑙, number of simulated data sets
𝑛𝑠𝑖𝑚, number of summary statistics per simulation 𝑛𝑠𝑡𝑎𝑡.

1: Input: 𝑡𝑜𝑙, 𝑛𝑠𝑖𝑚, 𝑛𝑠𝑡𝑎𝑡.
2: Input: 𝜽∗𝒊 . ⊳ Simulated from the prior 𝜽∗𝒊 ∼ 𝑃 (𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲) in the Simulator.
3: Sample 𝒙∗𝒊 ∼ 𝑃 (𝒙|𝒔, 𝑚, 𝑠𝑒𝑥, 𝒍;𝑲). ⊳ Sampled from the Simulator.
4: Calculate 𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒊 = 𝑆(𝒙∗𝒊 ).

5: Calculate 𝑑𝑖 =

√

∑𝑛𝑠𝑡𝑎𝑡
𝑗=1

(

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑖,𝑗−𝑆𝑢𝑚𝑆𝑡𝑎𝑡𝑜𝑏𝑠,𝑗
𝑆𝐷,𝑗

)2
.

6: Accept order
(

𝑑1, 𝑑2,⋯ , 𝑑𝑛𝑠𝑖𝑚
)

[1 ∶ (𝑛𝑠𝑖𝑚 ⋅ 𝑡𝑜𝑙)] of ‖.‖ = 𝑀 = (𝑛𝑠𝑖𝑚 ⋅ 𝑡𝑜𝑙). ⊳ Indeces of accepted ordered 𝑀 values denoted by
𝑖𝑑1∶𝑀 .

7: Return 𝑚th accepted (𝜽∗𝒎,𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒎 𝒔𝒄𝒂𝒍𝒆𝒅). ⊳ 𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒎 𝒔𝒄𝒂𝒍𝒆𝒅 =
(

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑚,1
𝑆𝐷,1

,
𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑚,2

𝑆𝐷,2
,⋯ ,

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑚,𝑛𝑠𝑡𝑎𝑡
𝑆𝐷,𝑛𝑠𝑡𝑎𝑡

)

.

Algorithm 5 ABC-linear regression correction algorithm performed on the output of the ABC-rejection. Input: 𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅 ,
𝑚th accepted 𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒎 𝒔𝒄𝒂𝒍𝒆𝒅 , 𝑚th accepted 𝜽∗𝒎 from ABC-rejection, with indeces of accepted ordered 𝑀 values denoted by 𝑖𝑑1∶𝑀 .

1: Input: 𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅 , 𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒊𝒅𝟏∶𝑴 𝒔𝒄𝒂𝒍𝒆𝒅 , 𝜽∗𝒊𝒅𝟏∶𝑴 .

2: Calculate each weight 𝑤𝑚 =
𝜅𝑑𝑀 (𝑑𝑚)

∑𝑀
𝑚=1 𝜅𝑑𝑀 (𝑑𝑚)

. ⊳ Calculate each of 𝑀 weights, {𝑤1, 𝑤2,… , 𝑤𝑀}, based on kernel type.

3: Calculate 𝜷𝑊𝐿𝑆 = (⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩
⊤𝑾 𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅)−1⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩

⊤𝑾 𝜽∗𝒊𝒅𝟏∶𝑴
. ⊳ WLS estimate of 𝜷 from

lsfit(), where diag(𝑾 ) = {𝑤1, 𝑤2,… , 𝑤𝑀}.
4: Return adjusted values 𝜽∗𝒊𝒅𝟏∶𝑴 𝒂𝒅𝒋 = 𝜽∗𝒊𝒅𝟏∶𝑴

− (
⟨

𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒊𝒅𝟏∶𝑴 𝒔𝒄𝒂𝒍𝒆𝒅

⟩

− ⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩)𝜷𝑊𝐿𝑆 .
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Table 3
Description of conversion between genomic recombination rate, and recombination rate with respect to SNPs.

One crossover of actual genome that occurs between 2 consecutive SNPs actually
would be one crossover between simulated SNPs only. Two crossovers between
consecutive SNPs on the genome would look like no crossover between simulated
SNPs, which we do not want to consider because it is very rare. Below is a note of
how the recombination conversion is performed:

For yeast cross from the lab as example, genome length=12.066Mb and strains differ
by 73,015 SNPs
𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 12.066Mb∕73, 015 ≈ 165
The recombination rate conversion inside the function:

𝑎𝑣𝑔𝑛𝑢𝑚𝑟𝑒𝑐 = (𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1) × 𝑟 (This is the average number of recombination
events of genome chunk on which the SNPs are spaced)

Example: For 𝐿 = 100, and 𝑟 = 3.0 × 10−4 𝑎𝑣𝑔𝑛𝑢𝑚𝑟𝑒𝑐 = 4.95 Convert 𝑟:
𝑟𝑆𝑁𝑃 = 𝑎𝑣𝑔𝑛𝑢𝑚𝑟𝑒𝑐∕(𝐿 − 1) = 4.95∕99 = 0.05 (This is the recombination rate of SNPs
alone) 𝑎𝑣𝑔𝑛𝑢𝑚𝑟𝑒𝑐𝑆𝑁𝑃 = (𝐿 − 1) × 𝑟𝑆𝑁𝑃 = 99 × 0.05 = 4.95 = 𝑎𝑣𝑔𝑛𝑢𝑚𝑟𝑒𝑐 (This is the average
number of recombination events of SNPs alone)

Parameters per SNP equivalent to line 13 and line 15 of Algorithm 3:
Sample number of recombination events independently of each other (line 13):
𝑛𝑟 ∼ Bin(𝐿 − 1, 𝑟𝑆𝑁𝑃 )

Sample loci of recombination events (line 15): 𝑳𝒓𝑺𝑵𝑷 ∼ Discrete Unif[𝑛𝑟 , 𝐿 − 1]

What is written in line 13 and line 15 of Algorithm 3:
Sample number of recombination events independently of each other (line 13):
𝑛𝑟 ∼ Bin(𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1, 𝑟)

Sample loci of recombination events (line 15):
𝑳𝒓 ∼ Discrete Unif[𝑛𝑟 , 𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1]

The parents reproduce sexually and parental genome recombination takes place. We
denote probability of genome recombination with 𝑟 (Morgans/bp units). We sample
number of recombination events 𝑛𝑟 from Binomial distribution with a sequence of
independent 𝐿 × 𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1 experiments with probability 𝑟. For each of the 𝑛𝑟
recombination events, we sample genome loci of recombination events 𝑳𝒓, from
Discrete Uniform distribution from locus 1 to locus 𝐿×𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 − 1, but we assume
no more than one recombination event between two consecutive SNPs. The cross of
two populations at 𝑡 = 0 (end Part II and start Part A of Algorithm 3) serves as an
ancestral pool for 𝑿 and 𝒀 populations.

Table 4
Euclidean distance equations.

Euclidean distance:
In the ABC-rejection we apply the Euclidean distance [39,40] technique to scale summary statistics:

𝑑𝑖 =
√

∑𝑛𝑠𝑡𝑎𝑡
𝑗=1

(

𝑆𝑢𝑚𝑆𝑡𝑎𝑡𝑖,𝑗−𝑆𝑢𝑚𝑆𝑡𝑎𝑡𝑎𝑡𝑜𝑏𝑠,𝑗
𝑆𝐷,𝑗

)2
(9)

with 𝑆𝐷, 𝑗, 𝑗 = 1, 2,… , 𝑛𝑠𝑡𝑎𝑡, of the median absolute deviation. The 𝑆𝑢𝑚𝑆𝑡𝑎𝑡𝑖,𝑗 and 𝑆𝑢𝑚𝑆𝑡𝑎𝑡𝑜𝑏𝑠,𝑗 are
points in 𝑛𝑠𝑡𝑎𝑡-dimensional space.
We scale the 𝑛𝑠𝑖𝑚 × 𝑛𝑠𝑡𝑎𝑡 summary statistics matrix such that each of the summary statistics
contributes equally when SD on the 𝑛𝑠𝑡𝑎𝑡-dimensional space:

⎡

⎢

⎢

⎢

⎢

⎣

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗1,1
𝑘⋅median

(

|𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑖,1−median(𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗,1 )|
) ⋯

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗1,𝑛𝑠𝑡𝑎𝑡
𝑘⋅median

(

|𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑖,𝑛𝑠𝑡𝑎𝑡−median(𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗,𝒏𝒔𝒕𝒂𝒕 )|
)

⋮ ⋱ ⋮
𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑛𝑠𝑖𝑚,1

𝑘⋅median
(

|𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑖,1−median(𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗,1 )|
) ⋯

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑛𝑠𝑖𝑚,𝑛𝑠𝑡𝑎𝑡
𝑘⋅median

(

|𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑖,𝑛𝑠𝑡𝑎𝑡−median(𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗,𝒏𝒔𝒕𝒂𝒕 )|
)

⎤

⎥

⎥

⎥

⎥

⎦

≡

⎡

⎢

⎢

⎢

⎢

⎣

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗1,1
𝑆𝐷,1

⋯
𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗1,𝑛𝑠𝑡𝑎𝑡

𝑆𝐷,𝑛𝑠𝑡𝑎𝑡

⋮ ⋱ ⋮
𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑛𝑠𝑖𝑚,1

𝑆𝐷,1
⋯

𝑆𝑢𝑚𝑆𝑡𝑎𝑡∗𝑛𝑠𝑖𝑚,𝑛𝑠𝑡𝑎𝑡
𝑆𝐷,𝑛𝑠𝑡𝑎𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, (10)

where 𝑘 is a constant scale factor dependent of the distribution of summary statistics [59] such that
the median absolute deviation is a consistent estimator for the standard deviation of each summary
statistic for 𝑗 = 1, 2,… , 𝑛𝑠𝑡𝑎𝑡:

𝑘 ⋅ E[median
(

|𝑆𝑢𝑚𝑆𝑡𝑎𝑡𝑖,𝑗 − median(𝑺𝒖𝒎𝑺𝒕𝒂𝒕,𝒋 )|
)

] = 𝜎𝑗 . (11)

For Gaussian distribution 𝑘 = 1∕𝛷−1(3∕4) ≈ 1.4826 [59] (estimated after converting to standard
normal), where for uniform distribution 𝑘 = 2∕

√

3 (for standard continuous uniform which spans on
[−

√

3,
√

3], with 𝑘 ⋅ (
√

3∕2) = 1). All of the parameters are simulated from uniform priors, therefore
we used 𝑘 = 2∕

√

3.
24



M. Lukaszewicz, O. Issaka Salia, P.A. Hohenlohe et al. Journal of Computational Mathematics and Data Science 10 (2024) 100091

c

r
c
c
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Table 5
Kernel equations.

Kernels and linear regression correction:
Associated with each accepted pair (𝜽∗

𝒎 ,𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒎 𝒔𝒄𝒂𝒍𝒆𝒅 ) from Algorithm 1 output a weight:

𝑤𝑚 ∝ 𝜅𝑑𝑀 (𝑑𝑚) (12)
[43], and

𝑤𝑚 =
𝜅𝑑𝑀 (𝑑𝑚 )

∑𝑀
𝑚=1 𝜅𝑑𝑀 (𝑑𝑚 )

(13)

[41], such that ∑𝑀
𝑚=1 𝑤𝑚 = 1, to obtain a weighted sample (𝜽∗

𝒎 𝒂𝒅𝒋 , 𝑤𝑚). The 𝑤𝑚 can be calculated
based on either Epanechnikov kernel:

𝜅𝑑𝑀 (𝑑𝑚) =
(

3
4

)

[

1 −
(

𝑑𝑚
𝑑𝑀

)2
]

(14)

[45], or the Gaussian kernel:

𝜅𝑑𝑀 (𝑑𝑚) =
(

1
√

2𝜋

)

exp
[

−
(

1
2

)(

𝑑𝑚
𝑑𝑀

)2
]

(15)

[41,44]. Next, we implemented lsfit R function [60,61] to calculate weighted least squares estimates
of regression coefficients, with indeces of accepted ordered 𝑀 values denoted by 𝑖𝑑1∶𝑀 :

�̂�𝑊𝐿𝑆 = (⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩
⊤𝑾 𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅 )−1⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩

⊤𝑾 𝜽∗
𝒊𝒅𝟏∶𝑴

(16)

,where 𝑾 is a diagonal matrix, and diag(𝑾 ) = {𝑤1 , 𝑤2 ,… , 𝑤𝑀} corresponding to kernel weights. The
beta estimates vector is an approximate draw from the posterior with
𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒊𝒅𝟏∶𝑴 𝒔𝒄𝒂𝒍𝒆𝒅 = 𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅 , and parameters from regression correction 𝜽∗

𝒊𝒅𝟏∶𝑴
are corrected

proportional to the (
⟨

𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒊𝒅𝟏∶𝑴 𝒔𝒄𝒂𝒍𝒆𝒅

⟩

− ⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩)�̂�𝑊𝐿𝑆 :

𝜽∗
𝒊𝒅𝟏∶𝑴 𝒂𝒅𝒋

= 𝜽∗
𝒊𝒅𝟏∶𝑴

− (
⟨

𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕∗𝒊𝒅𝟏∶𝑴 𝒔𝒄𝒂𝒍𝒆𝒅

⟩

− ⟨𝟏,𝑺𝒖𝒎𝑺𝒕𝒂𝒕𝒐𝒃𝒔 𝒔𝒄𝒂𝒍𝒆𝒅⟩)�̂�𝑊𝐿𝑆 (17)

[4,62,63], such that accepted data set with smallest Euclidean distance 𝑑𝑖 from Algorithm 1 output is
adjusted the least and the accepted data set with largest 𝑑𝑖 out of the 𝑀 accepted is adjusted the
most.

Appendix B

Detailed description of the assessment of genetic drift on the model from Section 4.1.
In order to assess the effect of genetic drift and most informative sample summary statistic, we did the following in order to

ompare mean square errors (MSEs) of 𝑠: (1) we examined change in difference of allele frequency between population 𝑿 and 𝒀
for every generation of the model for a single locus under selection (midpoint SNP), with reduced the model to 𝐿 = 20 SNPs, with
selection at locus at (𝐿∕2)th SNP rounded up of 𝑠𝐿∕2 = 0.1, migration 𝑚 = 0.1, spacing of SNPs every 165 loci (𝑆𝑁𝑃𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = 165), and
ecombination rate 𝑟 = 2.880 × 10−4; (2) we compared the stochasticity of a single randomly chosen simulation to an average of the
hange in allele frequencies per SNP from 𝑛𝑠𝑖𝑚 = 100, 000 simulations; (3) we simulated a single autosomal locus (a deterministic
ase, infinite population size) [38] under same strength of selection, with equal proportions of allele 0 and 1 (expected values from
he simulated model) – both 0.5 – in both populations at generation 𝑡 = 0 (equivalent to 𝑡 = 0 in Part A in Fig. 1), and we updated

frequencies per generation to:

f requency af ter selection ∝ newborn frequency × viability, (9)

We show negligent effect of genetic drift and effective population size of simulations on the difference in allele frequency 𝑝
between population 𝑿 and population 𝒀 , (𝑝𝑋 − 𝑝𝑌 ), summary statistics at locus under selection when we average our summary
statistics at each SNP over 100,000 simulations. By removing the stochastic effect we can deterministically identify most informative
summary statistic via ABC approach. Here we track (𝑝𝑋 − 𝑝𝑌 ) per generation based on the model.

Fig. 10 (main, left plot) shows mean of (𝑝𝑋 − 𝑝𝑌 ) summary statistics of 100,000 simulations tracked from 𝑡 = 0 to generation at
end of the simulation. There, we see linkage disequilibrium between locus under selection (red line) and the neighboring loci (black
lines), proportional to the distance between locus under selection and those that are not. The three drops in (𝑝𝑋 − 𝑝𝑌 ) summary
statistics values correspond to the migration generations where the populations mixing occurs and therefore less difference seen in
the proportion of alleles between populations 𝑿 and 𝒀 . In the upper right plot we superimposed the red plot from the main, left plot
and deterministically derived (𝑝𝑋 − 𝑝𝑌 ) for a single locus case [38] for haploid case with applied migration every 50th generation
in green. We see that we cannot distinguish between single locus deterministically derived (𝑝𝑋 − 𝑝𝑌 ) values, and the red line (locus
under selection, main, left plot) of the mean of (𝑝𝑋 − 𝑝𝑌 ) summary statistics of 100,000 simulations. For reference how stochastic
a single simulation can be, we randomly picked one of the 100,000 simulations and plotted the (𝑝𝑋 − 𝑝𝑌 ) values (lower right plot).
This visual representation verifies that with very large number of simulations the values of summary statistics (𝑝𝑋 − 𝑝𝑌 ) converge
to deterministic (expected) values, and the signal of selection has an effect on the nearby loci (linkage disequilibrium effect).
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Fig. 10. Mean of summary statistic (𝑝𝑋 − 𝑝𝑌 ) values per locus at SNP 1 to 𝐿 = 20 for 𝑛𝑠𝑖𝑚 = 100, 000 simulated data sets, with selection at single locus at
SNP 10. The decrease in (𝑝𝑋 − 𝑝𝑌 ) is shown to be proportional to distance away from locus under selection, and with drops of (𝑝𝑋 − 𝑝𝑌 ) values at migration 𝑚
generations (left). Superimposed expected values (deterministic model), and mean of 100,000 simulated data sets of (𝑝𝑋 − 𝑝𝑌 ) at locus under selection (upper
right). Visible genetic drift for a randomly chosen simulated data set.

Appendix C. Supplementary figures

Supplementary figures for the 1st method, i.e. without the initial outlier scan.
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcmds.2024.100091.
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