Chem 454 - Electrochemistry Homework

1] If $A+e^{-}=B$ has $E^{0}=0.775 V$ then the E^{0} for $2 A+2 e^{-}=2 B$ is \qquad .${ }^{1}$

2] The standard cell potential for the following is

$\mathrm{Fe}(\mathrm{s}) / \mathrm{Fe}^{2+}(\mathrm{aq}) / / \mathrm{Sn}^{2+}(\mathrm{aq}) / \mathrm{Sn}(\mathrm{s})$	$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}=\mathrm{Fe}(\mathrm{s})$	$\mathrm{E}^{0}=-0.44 \mathrm{~V}$
	$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}=\mathrm{Sn}(\mathrm{s})$	$\mathrm{E}^{0}=-0.141 \mathrm{~V}$

a) -0.030
b) -0.581
c) 0.581
d) 0.44
e) 0.30

3] The E^{0} for the following is
3

$$
\begin{array}{ll}
\mathrm{FeCO}_{3}(\mathrm{~s})+2 \mathrm{e}^{-}=\mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{3}^{2-} & \mathrm{E}^{0}=? \\
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}=\mathrm{Fe}(\mathrm{~s}) & \mathrm{E}^{0}=-0.44 \mathrm{~V} \\
\mathrm{~K}_{\mathrm{sp}}\left\{\mathrm{FeCO}_{3}(\mathrm{~s})\right\}=2.1 \mathrm{e}-11 &
\end{array}
$$

a) 0.756 V
b) -0.124 V
c) 0.124 V
d) -1.07
e) -0.756

4] An electrochemical cell will discharge spontaneously if 4
a) $\mathrm{E}_{\text {cell }}<0$
b) $\mathrm{E}_{\text {cell }}>0$
c) $\mathrm{E}_{\text {cell }}=0$
d) does not depend on $E_{\text {cell }}$

5] The reductions take place at which electrode?
a) anode
b) toade
c) cathode
d) alkaline
e) amphiprotic

6] The purpose of a reference electrode is to provide \qquad (5 points)

7] What is E^{0} cell for the reaction below?
7
$\mathrm{F}_{2}+2 \mathrm{Fe}^{2+}=2 \mathrm{~F}^{-}+2 \mathrm{Fe}^{3+}$
$\mathrm{F}_{2}+2 \mathrm{e}^{-}=2 \mathrm{~F}^{-}$
$\mathrm{E}^{0}{ }_{\text {red }}=2.890 \mathrm{~V}$
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+}$
$\mathrm{E}^{0}{ }_{\text {red }}=0.771 \mathrm{~V}$
a) -2.119 V
b) -1.348 V
c) 1.348 V
d) 0.655 V
e) 2.119 V

8] What is E^{0} cell for the reaction below? 8

$$
\mathrm{Hg}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{e}-=2 \mathrm{Hg}(\mathrm{I})+\mathrm{SO}_{4}^{2-}
$$

$$
\begin{array}{lr}
\mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{e}^{-}=2 \mathrm{Hg}(\mathrm{I}) & \mathrm{E}_{\mathrm{red}}=0.796 \mathrm{~V} \\
\mathrm{Hg}_{2} \mathrm{SO}_{4}(\mathrm{~s})=\mathrm{Hg}_{2}{ }^{2+}+\mathrm{SO}_{4}{ }^{2-} & \mathrm{K}_{\text {sp }}=7.4 \mathrm{e}-7
\end{array}
$$

9] What is E^{0} cell for the following reaction? $\quad 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}^{+}=2 \mathrm{Na}^{+}+\mathrm{H}_{2}(\mathrm{~g}) \quad{ }^{9}$

$$
\begin{array}{ll}
\mathrm{Na}^{+}+\mathrm{e}^{-}=\mathrm{Na}(\mathrm{~s}) & \mathrm{E}^{0}=-2.7143 \mathrm{~V} \\
2 \mathrm{H}^{+}+2 \mathrm{e}^{-}=\mathrm{H}_{2}(\mathrm{~g}) & \mathrm{E}^{0}=0.0000 \mathrm{~V}
\end{array}
$$

a) 5.4286 V
b) -5.4286 V
c) -2.7143 V
d) 2.7143 V
e) 1.3572 V

10] What is the half reaction potential for reduction of $1.00 \mathrm{e}-5 \mathrm{M} \mathrm{H}^{+}$?
a) 0.0000 V
b) 0.296 V
c) -0.296 V
d) 0.148 V
e) -0.148 V

11] Which of the following species is the strongest reducing agent?

$$
\begin{array}{ll}
\mathrm{A}^{+}+\mathrm{e}-\mathrm{A} & \mathrm{E}^{0}=0.75 \mathrm{~V} \\
\mathrm{~B}+\mathrm{e}-=\mathrm{B}^{-} & \mathrm{E}^{0}=0.25 \mathrm{~V} \\
\mathrm{D}^{2+}+\mathrm{e}-=\mathrm{D}^{+} & \mathrm{E}^{0}=-0.50 \mathrm{~V}
\end{array}
$$

a) A^{+}
b) B^{-}
c) B
d) D^{2+}
e) D^{+}

12] Calculate the standard state cell potential for the following

$$
\mathrm{Cu}(\mathrm{~s}) / \mathrm{Cu}^{2+}(\mathrm{aq}) / / \mathrm{K}^{+}(\mathrm{aq}) / \mathrm{K}(\mathrm{~s})
$$

a) -3.275 V
b) 3.275 V
c) 2.587 V
d) -2.597 V
e) 1.881 V

13] What is the standard state reduct n potential for the following reaction?

$$
\begin{aligned}
& \mathrm{AgBr}(\mathrm{~s})+\mathrm{e}^{-}=\mathrm{Ag}(\mathrm{~s})+\mathrm{Br}^{-} \\
& \mathrm{Ag}^{+}+\mathrm{e}^{-}=\mathrm{Ag}(\mathrm{~s}) \\
& \mathrm{AgBr}(\mathrm{~s})=\mathrm{Ag}^{+}+\mathrm{Br}^{-} \quad \mathrm{K}=0.799 \mathrm{~V} \\
& \mathrm{Sp}=5.0 \mathrm{e}-13
\end{aligned}
$$

14] $\mathrm{A} \mathrm{Ag} / \mathrm{AgCl}$ electrode is in contact with a solution that is 0.150 M in $\mathrm{KCl}(\mathrm{aq})$. What is the potential of that electrode if measured against the SHE? ${ }^{14}$

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-} \leftrightharpoons \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} \quad \mathrm{E}^{0}=0.2223 \mathrm{~V}
$$

15] Based on the $\mathrm{E}^{0 \prime}$ potentials in the following table (E^{0} at pH 7), which is the strongest reducing agent? Which is the strongest oxidizing agent?

Strongest reducing agent \qquad
Strongest oxidizing agent \qquad
What would be the spontaneous balanced redox reaction between the strongest reducing agent and the strongest reducing agent? (5 points) What would be $\mathrm{E}_{\text {cell }}$ for this reaction? (5 points) ${ }^{15}$

Reduction potentials of biological interest		
Reaction	$E^{\circ}(\mathbf{V})$	$\boldsymbol{E}^{\circ \prime}(\mathbf{V})$
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}$	+1.229	+0.816
$\mathrm{Fe}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$	+0.771	+0.771
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{I}^{-}$	+0.535	+0.535
Cytochrome $a\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \rightleftharpoons$ cytochrome $a\left(\mathrm{Fe}^{2+}\right)$	+0.290	+0.290
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}$	+0.695	+0.281
Cytochrome $c\left(\mathrm{Fe}^{3+}\right)+\mathrm{e}^{-} \rightleftharpoons$ cytochrome $c\left(\mathrm{Fe}^{2+}\right)$	-	+0.254
2,6-Dichlorophenolindophenol $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ reduced 2,6-dichlorophenolindophenol	-	+0.22
Dehydroascorbate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ ascorbate $+\mathrm{H}_{2} \mathrm{O}$	+0.390	+0.058
Fumarate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ succinate	+0.433	+0.031
Methylene blue $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ reduced product	+0.532	+0.011
Glyoxylate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ glycolate	-	-0.090
Oxaloacetate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ malate	$+0.330$	-0.102
Pyruvate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ lactate	+0.224	-0.190
Riboflavin $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ reduced riboflavin	-	-0.208
$\mathrm{FAD}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{FADH}_{2}$	-	-0.219
(Glutathione-S) $2+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons 2$ glutathione-SH	-	-0.23
Safranine $\mathrm{T}+2 \mathrm{e}^{-} \rightleftharpoons$ leucosafranine T	-0.235	-0.289
$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right)_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$	-	-0.30
$\mathrm{NAD}^{+}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{NADH}$	-0.105	-0.320
$\mathrm{NADP}^{+}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{NADPH}$	-	-0.324
Cystine $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons 2$ cysteine	-	-0.340
Acetoacetate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{L}-\beta$-hydroxybutyrate	-	-0.346
Xanthine $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ hypoxanthine $+\mathrm{H}_{2} \mathrm{O}$	-	-0.371
$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}$	0.000	-0.414
Gluconate $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ glucose $+\mathrm{H}_{2} \mathrm{O}$	-	-0.44
$\mathrm{SO}_{4}^{2-}+2 \mathrm{e}^{-}+2 \mathrm{H}^{+} \rightleftharpoons \mathrm{SO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}$	-	-0.454
$2 \mathrm{SO}_{3}^{2-}+2 \mathrm{e}^{-}+4 \mathrm{H}^{+} \rightleftharpoons \mathrm{S}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$	-	-0.527

16] (10 points) The potential of the $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode is 0.197 volts. Given the standard reduction potential: ${ }^{16}$

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} \quad \mathrm{E}^{0}=0.222 \mathrm{~V}
$$

Calculate the concentration of KCl in this electrode.

17] What is E^{0} cell for $2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$, is this a spontaneous reaction? ${ }^{17}$
18] From the data in the Table calculate the $\mathrm{K}_{\text {sp }}$ of $\mathrm{PbSO}_{4} . \quad{ }^{18}$

Half Reaction	E^{0}
$\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}--->2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}+\mathrm{e}^{---->} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$	+0.36
$2 \mathrm{H}^{+}+2 \mathrm{e}^{---->} \mathrm{H}_{2}$	0.00
$\mathrm{~Pb}^{2+}+2 \mathrm{e}^{-}--->\mathrm{Pb}$	-0.126
$\mathrm{PbSO}_{4}+2 \mathrm{e}^{---->\mathrm{Pb}^{-}+\mathrm{SO}_{4}{ }^{2-}}$	-0.355
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}--->\mathrm{Fe}$	-0.41

19] A silver electrode responds with a potential of 0.729 V when 25.00 mL of 0.0400 M KBr solution is mixed with 20.00 mL of $0.200 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$. What is the standard reduction potential of Ag^{+}? What is the half reaction for that E^{0} ?

$$
\mathrm{AgBr}_{\mathrm{sp}}=5.0 \mathrm{e}-13
$$

20] What is E^{0} for the half reaction given the following?

$$
\begin{array}{ll}
M X_{2}(s)+2 e-=M(s)+2 X^{-} & E^{0}=? \\
M^{2+}+2 e=M(s) & E^{0}=0.100 V \\
M X_{2}(s)=M^{2+}+2 X^{-} & K_{s p}=1.0 \mathrm{e}-10
\end{array}
$$

21] The standard cell potential for the following is ${ }^{21}$

$$
\begin{aligned}
& \mathrm{Fe}(\mathrm{~s}) / \mathrm{Fe}^{2+}(\mathrm{aq}) / / \mathrm{Sn}^{2+}(\mathrm{aq}) / \mathrm{Sn}(\mathrm{~s}) \\
& \mathrm{Fe}^{2+}+2 \mathrm{e}-=\mathrm{Fe}(\mathrm{~s}) \mathrm{E}^{0}=-0.44 \mathrm{~V} \\
& \mathrm{Sn}^{2+}+2 \mathrm{e}-=\mathrm{Sn}(\mathrm{~s}) \mathrm{E}^{0}=-0.141 \mathrm{~V}
\end{aligned}
$$

22] What is the Ksp of AgCl given the following? ${ }^{22}$

$$
\begin{array}{ll}
\mathrm{Ag}^{+}+\mathrm{e}-=\mathrm{Ag}(\mathrm{~s}) & \mathrm{E}^{0}=0.799 \mathrm{~V} \\
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}-=\mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} & \mathrm{E}^{0}=0.222 \mathrm{~V}
\end{array}
$$

Note that $2.303 \mathrm{RT} / \mathrm{nF}=0.0592 \mathrm{~V}$.
23] Which of the following species is the strongest oxidizing agent? ${ }^{23}$

$$
\begin{array}{ll}
A+e^{-}=A^{-} & E^{0}=0.500 \text { Volts } \\
A^{-}+e^{-}=A^{2-} & E^{0}=0.000 \text { volts } \\
A^{2-}+e^{-}=A^{3-} & E^{0}=-0.500 \text { volts }
\end{array}
$$

24] What is E^{0} cell for the reaction below? ${ }^{24}$

$$
\begin{array}{lll}
\mathrm{F}_{2}+2 \mathrm{Fe}^{2+}=2 \mathrm{~F}^{-}+2 \mathrm{Fe}^{3+} & \mathrm{F}_{2}+2 \mathrm{e}^{-}=2 \mathrm{~F}^{-} & \mathrm{E}_{\text {red }}^{0}=2.890 \mathrm{~V} \\
& \mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+} & \mathrm{E}_{\text {red }}^{0}=0.771 \mathrm{~V}
\end{array}
$$

25] Calculate $\mathrm{E}_{\text {cell }}$ for $\mathrm{Cd}(\mathrm{s}) /\left[\mathrm{CdCl}_{2}\right](\mathrm{aq})=1.0 \mathrm{M} / /\left[\mathrm{AgNO}_{3}\right](\mathrm{aq})=1.0 \mathrm{M} / \mathrm{Ag}(\mathrm{s})^{25}$

Answers

[^0]${ }^{6}$ to provide a stable potential chemical reference in which the cathode reaction can be compared.
${ }^{7}$ Ecell $=$ Ecath - Eanod $=2.890-0.771=2.119 \mathbf{V}$
${ }^{8} \mathrm{E}=0.796-0.0592 / 2 \log 1 /\left[\mathrm{Hg}_{2}{ }^{2+}\right]$
\[

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=7.4 \mathrm{e}-7=\left[\mathrm{Hg}_{2}{ }^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right] \\
& {\left[\mathrm{Hg}_{2}{ }^{2+}\right]=7.4 \mathrm{e}-7 /\left[\mathrm{SO}_{4}{ }^{2-}\right]} \\
& \mathrm{E}=0.796-0.0592 / 2 \log \left[\mathrm{SO}_{4}{ }^{2-}\right] / 7.4 \mathrm{e}-7=0.615 \mathrm{~V}
\end{aligned}
$$
\]

${ }^{9} \mathrm{~d}: \mathrm{E}_{\text {cell }}=0.0000-(-2.7143) \mathrm{V}$
${ }^{10} \mathrm{c}: \mathrm{E}=\mathrm{E}^{0}-0.0592 \log 1 /\left[\mathrm{H}^{+}\right]=0.0000-0.0592 \log 1 /[1.00 e-5]=-0.296 \mathrm{~V}$
${ }^{11} \mathrm{e}$
${ }^{12} \mathrm{a}: \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cath }}-\mathrm{E}_{\text {anod }}=-2.936-0.339=-3.275 \mathrm{~V}$
${ }^{13}$ Start with: $\mathrm{E}=\mathrm{E}^{0}\left(\mathrm{Ag}^{+} / \mathrm{Ag}\right)-0.0592 \log 1 /\left[\mathrm{Ag}^{+}\right]$
Realize that $\quad \mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right] \quad\left[\mathrm{Ag}^{+}\right]=\mathrm{K}_{\text {sp }} /\left[\mathrm{Br}^{-}\right] \quad$ sub into Nernst Eqn above $\mathrm{E}=\mathrm{E}^{0}\left(\mathrm{Ag}^{+} / \mathrm{Ag}\right)-0.0592 \log \left[\mathrm{Br}^{-}\right] / \mathrm{K}_{\text {sp }}$ let $[\mathrm{Br}-]=1$ for standard state conditions $E^{0}=0.799-0.0592 \log 1 / 5.00 e-13=0.0708 \mathrm{~V}$ ${ }^{14} E=0.2223-0.0592 \log 0.150=0.271 \mathrm{~V}$
${ }^{15}$ Strongest reducing agent \qquad $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$ \qquad
Strongest oxidizing agent \qquad O_{2} \qquad

$$
\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}=2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}_{\text {red }}{ }^{0}=1.229 \mathrm{~V}
$$

$$
\underline{2 \mathrm{~S}_{2}} \underline{\mathrm{O}}_{4} \underline{ }^{2-}+4 \mathrm{H}_{2} \underline{\mathrm{O}=4 \mathrm{SO}_{3} \underline{2}^{2-}+8 \mathrm{H}^{+}+4 \mathrm{e}^{-} \quad \quad \mathrm{E}_{\text {red }}{ }^{0}=-0.527, ~}
$$

$\mathrm{O}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{SO}_{3}{ }^{2-}+4 \mathrm{H}^{+} \quad \mathrm{E}_{\text {cell }}=1.229-(-0.527)=1.756$
${ }^{16} \mathrm{E}=0.222-0.0592 \log \left[\mathrm{Cl}^{-}\right]=0.197\left[\mathrm{Cl}^{-}\right]=2.64 \mathrm{M}$
$17 \quad$ Cathode: $\quad 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \quad \mathrm{E}^{0}=0.00$
Anode: $\quad 2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-} \quad \mathrm{E}^{0}=0.535 \mathrm{~V}$
$\mathrm{E}^{0}{ }_{\text {cell }}=\mathrm{E}^{0}$ cat $-\mathrm{E}_{\text {anod }}^{0}=0.00-0.535=-0.535 \mathrm{~V}$, this is an uphill reaction.
${ }^{18}$ Cathode: $\mathrm{PbSO}_{4}+2 \mathrm{e}^{-}-->\mathrm{Pb}+\mathrm{SO}_{4}{ }^{2-}$
Anode: $\mathrm{Pb}--->\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$
Cell Rxn and $\mathrm{K}_{\mathrm{sp}}: \quad \mathrm{PbSO}_{4}--->\mathrm{Pb}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
$E^{0}=-0.355+0.126=-0.229 \mathrm{~V}$
$\Delta \mathrm{G}=-\mathrm{nFE}=-\mathrm{RT} \ln \mathrm{K}$
$E^{0}=0.0592 / n \log K$
$-0.229=0.0592 / 2 \log K_{s p} \quad K_{\text {sp }}=1.8 e-8$
${ }^{19} \mathrm{mmol} \mathrm{Br}^{-}$added $=25.0 \mathrm{~mL}(0.0400 \mathrm{M})=1.00$
$\mathrm{mmol} \mathrm{Ag}^{+}$added $=20.0 \mathrm{~mL}(0.200 \mathrm{M})=4.00$
$\mathrm{mmol} \mathrm{Ag}^{+}$left after precipitation $=4.00-1.00=3.00$
$\left[\mathrm{Ag}^{+}\right]=3.00 \mathrm{mmol} / 45.0 \mathrm{~mL}=6.67 \mathrm{e}-2$
$E=E^{0}-0.0592 \log \left(\mathrm{Ag}^{+}\right)$
$0.729 \mathrm{~V}=\mathrm{E}^{0}-0.0592 \log 1 /(6.67 \mathrm{e}-2) \quad \mathrm{E}^{0}=0.799 \mathrm{~V} \quad \mathrm{Ag}^{+}+\mathrm{e}-=\mathrm{Ag} \quad \mathrm{E}^{0}=0.799 \mathrm{~V}$
${ }^{20} E^{0}=0.100-\frac{0.0592}{2} \log \frac{1}{K_{s p}}$
${ }^{21} \mathrm{E}=-0.141-(-0.44)=0.30 \mathrm{~V}$
${ }^{22}$ e) $\quad \mathrm{rxn}: \mathrm{AgCl}(\mathrm{s})=\mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
add the following

$$
\begin{array}{ll}
\mathrm{Ag}(\mathrm{~s})=\mathrm{Ag}^{+}+\mathrm{e}- & \mathrm{E}^{0}=0.799 \mathrm{~V} \\
\mathrm{AgCl}(\mathrm{~s})+\mathrm{e}-=\mathrm{Ag}(\mathrm{~s})+\mathrm{Cl}^{-} & \mathrm{E}^{0}=0.222 \mathrm{~V}
\end{array}
$$

$\mathrm{E}_{\text {cell }}=0.222-0.799 \mathrm{~V}=-0.577 \mathrm{~V}$
$\Delta G=-R T \ln K s p=-n F E$
$K s p=10^{\wedge}(-0.577 / 0.0592)=1.79 \mathrm{e}-10$
${ }^{23}$ b) A
${ }^{24}$ e) Ecell $=$ Ecath - Eanod $=2.890-0.771=2.119$ V
${ }^{25}$ Anode: $\mathrm{Cd}=\mathrm{Cd}^{2+}+2 \mathrm{e}-\quad \mathrm{E}^{0}=-0.402 \mathrm{~V}$

$$
\text { Cathode } \mathrm{Ag}^{+}+\mathrm{e}-=\mathrm{Ag}(\mathrm{~s}) \quad \mathrm{E}^{0}=0.799 \mathrm{~V}
$$

All 1M concentration
$E_{\text {cell }}=E_{\text {cell }}^{0}=E_{\text {cath }}-E_{\text {anod }}=0.799-(-0.402) \mathrm{V}=1.201 \mathrm{~V}$

[^0]: ${ }^{1} 0.775 \mathrm{~V}$
 ${ }^{2} E=-0.141-(-0.44)=0.30 \mathrm{~V}$
 ${ }^{3} E=-0.44-(0.0592 / 2) \log 1 / K_{\text {sp }}=-0.756 \mathrm{~V}$
 ${ }^{4}$ b) $\mathrm{E}_{\text {cell }}>0$
 ${ }^{5}$ cathode

