Chem 454 - Electrochemistry Homework

- 1] If $A + e^{-} = B$ has $E^{0} = 0.775$ V then the E^{0} for $2A + 2e^{-} = 2B$ is . ¹
- 2] The standard cell potential for the following is

 $Fe(s)/Fe^{2+}(aq)//Sn^{2+}(aq)/Sn(s)$

$$Fe^{2+} + 2e^{-} = Fe(s)$$
 $E^{0} = -0.44 \text{ V}$

$$E^0 = -0.44 \text{ V}$$

$$Sn^{2+} + 2e^{-} = Sn(s)$$
 $E^{0} = -0.141 \text{ V}$

$$E^0 = -0.141 \text{ V}$$

- a) -0.030
- b) -0.581
- c) 0.581
- d) 0.44
- e) 0.30
- 3] The E⁰ for the following is

 $FeCO_3(s) + 2e^{-} = Fe(s) + CO_3^{2-}$

$$E^0 = ?$$

$$Fe^{2+} + 2e^{-} = Fe(s)$$

$$E^0 = -0.44 \text{ V}$$

$$K_{sp} \{ FeCO_3(s) \} = 2.1e-11$$

- a) 0.756 V
- b) -0.124 V
- c) 0.124 V
- d) -1.07
- e) -0.756
- 4] An electrochemical cell will discharge spontaneously if 4
- a) $E_{cell} < 0$
- b) $E_{cell} > 0$ c) $E_{cell} = 0$
- d) does not depend on Ecell
- 5] The reductions take place at which electrode? 5
- a) anode
- b) toade
- c) cathode
- d) alkaline
- e) amphiprotic
- 6] The purpose of a reference electrode is to provide (5 points)

7] What is E^{0}_{cell} for the reaction below?

$$F_2 + 2Fe^{2+} = 2F^- + 2Fe^{3+}$$

$$F_2 + 2e^- = 2F^-$$

$$F_2 + 2e^- = 2F^ E^0_{red} = 2.890 \text{ V}$$

$$Fe^{3+} + e^{-} = Fe^{2+}$$
 $E^{0}_{red} = 0.771 \text{ V}$

$$E^{0}_{red} = 0.771 \text{ V}$$

a) -2.119 V

e) 2.119 V

8] What is E⁰cell for the reaction below?

$$Hg_2SO_4(s) + 2e^- = 2Hg(l) + SO_4^{2-}$$

$$Hg_2^{2+} + 2e^- = 2Hg(I)$$
 $E^0_{red} = 0.796 \text{ V}$

$$E^{0}_{red} = 0.796 V$$

$$Hg_2SO_4(s) = Hg_2^{2+} + SO_4^{2-}$$
 $K_{sp} = 7.4e-7$

$$K_{sp} = 7.4e-7$$

9] What is E^{0}_{cell} for the following reaction? $2Na(s) + 2H^{+} = 2Na^{+} + H_{2}(g)$

$$Na^{+} + e^{-} = Na(s)$$

$$E^0 = -2.7143 \text{ V}$$

$$2H^+ + 2e^- = H_2(g)$$
 $E^0 = 0.0000 \text{ V}$

$$E^0 = 0.0000 \text{ V}$$

- a) 5.4286 V
- b) -5.4286 V
- c) -2.7143 V
- d) 2.7143 V
- e) 1.3572 V

10] What is the half reaction potential for reduction of 1.00e-5 M H⁺?

- a) 0.0000 V
- b) 0.296 V
- c) -0.296 V
- d) 0.148 V
- e) -0.148 V

$$A^{+} + e^{-} = A$$

$$A^+ + e^- = A$$
 $E^0 = 0.75 \text{ V}$

$$B + e - = B$$

$$B + e^- = B^ E^0 = 0.25 \text{ V}$$

$$D^{2+} + e^- = D^+$$
 $E^0 = -0.50 \text{ V}$

$$F^0 = -0.50 \text{ V}$$

- a) A⁺
- b) B
- c) B
- d) D^{2+}
- e) D⁺
- 12] Calculate the standard state cell potential for the following

$$Cu(s)/Cu^{2+}(aq)//K^{+}(aq)/K(s)$$

- a) -3.275 V
- b) 3.275 V
- c) 2.587 V
- d) -2.597 V
- e) 1.881 V
- 13] What is the standard state reduct n potential for the following reaction?

$$AgBr(s) + e^{-} = Ag(s) + Br^{-}$$

$$Ag^+ + e^- = Ag(s)$$
 $E^0 = 0.799 \text{ V}$

$$E^0 = 0.799 \text{ V}$$

$$AgBr(s) = Ag^{+} + Br^{-}$$
 $K_{sp} = 5.0e-13$

$$K_{sp} = 5.0e-13$$

14] A Ag/AgCl electrode is in contact with a solution that is 0.150 M in KCl(aq). What is the potential of that electrode if measured against the SHE? 14

$$AgCl(s) + e^{-} = Ag(s) + Cl^{-}$$
 $E^{0} = 0.2223 \text{ V}$

$$E^0 = 0.2223 \text{ V}$$

15] Based on the E^{0} potentials in the following table (E^{0} at pH 7), which is the strongest reducing agent? Which is the strongest oxidizing agent?

Strongest reducing agent	

Strongest oxidizing agent _____

What would be the spontaneous balanced redox reaction between the strongest reducing agent and the strongest reducing agent? (5 points) What would be E_{cell} for this reaction? (5 points) 15

Table 14-2 Reduction potentials of biological interest		
Reaction	E° (V)	$E^{\circ}'(\mathbf{V})$
$O_2 + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229	+0.816
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771	+0.771
$I_2 + 2e^- \rightleftharpoons 2I^-$	+0.535	+0.535
Cytochrome a (Fe ³⁺) + e ⁻ \rightleftharpoons cytochrome a (Fe ²⁺)	+0.290	+0.290
$O_2(g) + 2H^+ + 2e^- \rightleftharpoons H_2O_2$	+0.695	+0.281
Cytochrome c (Fe ³⁺) + e ⁻ \rightleftharpoons cytochrome c (Fe ²⁺)	_	+0.254
2,6-Dichlorophenolindophenol + $2H^+ + 2e^- \rightleftharpoons reduced$		
2,6-dichlorophenolindophenol	_	+0.22
Dehydroascorbate + $2H^+ + 2e^- \rightleftharpoons$ ascorbate + H_2O	+0.390	+0.058
Fumarate $+ 2H^+ + 2e^- \rightleftharpoons succinate$	+0.433	+0.031
Methylene blue $+ 2H^+ + 2e^- \rightleftharpoons$ reduced product	+0.532	+0.011
Glyoxylate $+ 2H^+ + 2e^- \rightleftharpoons glycolate$	_	-0.090
Oxaloacetate $+ 2H^+ + 2e^- \rightleftharpoons malate$	+0.330	-0.102
Pyruvate $+ 2H^+ + 2e^- \rightleftharpoons lactate$	+0.224	-0.190
Riboflavin + 2H ⁺ + 2e ⁻ ⇒ reduced riboflavin	_	-0.208
$FAD + 2H^+ + 2e^- \rightleftharpoons FADH_2$	_	-0.219
$(Glutathione-S)_2 + 2H^+ + 2e^- \rightleftharpoons 2$ glutathione-SH	_	-0.23
Safranine T + $\tilde{2}e^- \rightleftharpoons$ leucosafranine T	-0.235	-0.289
$(C_6H_5S)_2 + 2H^+ + 2e^- \rightleftharpoons 2C_6H_5SH$	<u></u>	-0.30
$NAD^{+} + H^{+} + 2e^{-} \rightleftharpoons NADH$	-0.105	-0.320
$NADP^+ + H^+ + 2e^- \rightleftharpoons NADPH$	_	-0.324
Cystine $+ 2H^+ + 2e^- \rightleftharpoons 2$ cysteine	_	-0.340
Acetoacetate $+ 2H^+ + 2e^- \rightleftharpoons L-\beta$ -hydroxybutyrate	_	-0.346
Xanthine $+ 2H^+ + 2e^- \rightleftharpoons \text{hypoxanthine} + H_2O$	\$ 	-0.371
$2H^+ + 2e^- \rightleftharpoons H_2$	0.000	-0.414
Gluconate $+ 2H^{+} + 2e^{-} \rightleftharpoons glucose + H_2O$	_	-0.44
$SO_4^{2-} + 2e^- + 2H^+ \rightleftharpoons SO_3^{2-} + H_2O$	_	-0.454
$2SO_3^{2-} + 2e^- + 4H^+ \rightleftharpoons S_2O_4^{2-} + 2H_2O$	_	-0.527

16] (10 points) The potential of the Ag/AgCl reference electrode is 0.197 volts. Given the standard reduction potential: 16

$$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}$$
 $E^{0} = 0.222 \text{ V}$

Calculate the concentration of KCl in this electrode.

17] What is E^0_{cell} for $2I^- + 2H^+ \rightarrow H_2 + I_2$, is this a spontaneous reaction? ¹⁷

18] From the data in the Table calculate the K_{sp} of PbSO₄. 18

Half Reaction	E ⁰
$O_2 + 4H^+ + 4e^> 2H_2O$	+1.23
Fe(CN) ₆ ³⁻ + e ⁻ > Fe(CN) ₆ ⁴⁻	+0.36
2H ⁺ + 2e ⁻ > H ₂	0.00
Pb ²⁺ + 2e ⁻ > Pb	-0.126
PbSO ₄ + 2e ⁻ > Pb + SO ₄ ²⁻	-0.355
Fe ²⁺ + 2e ⁻ > Fe	-0.41

19] A silver electrode responds with a potential of 0.729 V when 25.00 mL of 0.0400 M KBr solution is mixed with 20.00 mL of 0.200 M AgNO₃(aq). What is the standard reduction potential of Ag $^+$? What is the half reaction for that E 0 ?

20

AgBr
$$K_{sp} = 5.0e-13$$

20] What is E⁰ for the half reaction given the following?

$$MX_2(s) + 2e^- = M(s) + 2X^- \qquad E^0 = ?$$

$$M^{2+} + 2e = M(s)$$
 $E^0 = 0.100 \text{ V}$

$$MX_2(s) = M^{2+} + 2X^{-}$$
 $K_{sp} = 1.0e-10$

21] The standard cell potential for the following is 21

$$Fe(s)/Fe^{2+}(aq)//Sn^{2+}(aq)/Sn(s)$$

$$Fe^{2+} + 2e- = Fe(s) E^0 = -0.44 V$$

$$Sn^{2+} + 2e^- = Sn(s) E^0 = -0.141 V$$

22] What is the Ksp of AgCl given the following? 22

$$Ag^+ + e^- = Ag(s)$$

$$E^0 = 0.799 \text{ V}$$

$$AgCl(s) + e- = Ag(s) + Cl^{-}$$
 $E^{0} = 0.222 \text{ V}$

$$E^0 = 0.222 \text{ V}$$

Note that 2.303RT/nF = 0.0592 V.

23] Which of the following species is the strongest oxidizing agent? ²³

$$A + e^{-} = A^{-}$$

$$A + e^{-} = A^{-}$$
 $E^{0} = 0.500 \text{ Volts}$

$$A^{-} + e^{-} = A^{2}$$

$$A^{-} + e^{-} = A^{2-}$$
 $E^{0} = 0.000 \text{ volts}$

$$A^{2-} + e^{-} = A$$

$$A^{2-} + e^{-} = A^{3-}$$
 $E^{0} = -0.500$ volts

24] What is E^{0}_{cell} for the reaction below? ²⁴

$$F_2 + 2Fe^{2+} = 2F^- + 2Fe^{3+}$$
 $F_2 + 2e^- = 2F^ E^0_{red} = 2.890 \text{ V}$

$$F_2 + 2e^- = 2F^-$$

$$E_{red}^{0} = 2.890 \text{ V}$$

$$Fe^{3+} + e^{-} = Fe^{2+}$$
 $E^{0}_{red} = 0.771 \text{ V}$

$$E^{0}_{red} = 0.771 \text{ V}$$

25] Calculate E_{cell} for Cd(s)/[CdCl₂](aq) = 1.0 M//[AgNO₃](aq) = 1.0 M/Ag(s) ²⁵

Answers

3
 E = -0.44 - (0.0592/2) log 1/K_{sp} = -0.756 V

⁵ cathode

⁶ to provide a stable potential chemical reference in which the cathode reaction can be compared.

⁷ Ecell = Ecath – Eanod =
$$2.890 - 0.771 = 2.119 \text{ V}$$

¹ 0.775 V

 $^{^{2}}$ E = -0.141 -(-0.44) = 0.30 V

 $^{^{4}}$ b) $E_{cell} > 0$

```
<sup>8</sup> E = 0.796 - 0.0592/2 \log 1/[Hg<sub>2</sub><sup>2+</sup>]
         K_{sp} = 7.4e-7 = [Hg_2^{2+}][SO_4^{2-}]
         [Hg_2^{2+}] = 7.4e-7/[SO_4^{2-}]
         E = 0.796 - 0.0592/2 \log [SO_4^2]/7.4e-7 = 0.615 V
^{9} d: E^{0}_{cell} = 0.0000 - (-2.7143) V
<sup>10</sup> c: E = E^0 - 0.0592 \log 1/[H^+] = 0.0000 - 0.0592 \log 1/[1.00e-5] = -0.296 V
م 11
<sup>12</sup> a: E_{cell} = E_{cath} - E_{anod} = -2.936 - 0.339 = -3.275 \text{ V}
<sup>13</sup> Start with: E = E^0(Ag^+/Ag) - 0.0592 \log 1/[Ag^+]
Realize that K_{sp} = [Ag^+][Br^-] [Ag^+] = K_{sp} / [Br^-] sub into Nernst Eqn above
E = E^{0}(Ag^{+}/Ag) - 0.0592 \log [Br^{-}]/K_{sp} let [Br^{-}] = 1 for standard state conditions
E^0 = 0.799 - 0.0592 \log 1/5.00e-13 = 0.0708 V
^{14} E = 0.2223 - 0.0592 log 0.150 = 0.271 V
<sup>15</sup> Strongest reducing agent S<sub>2</sub>O<sub>4</sub><sup>2-</sup>
Strongest oxidizing agent _____O<sub>2</sub>____
         O_2 + 4H^+ + 4e^- = 2H_2O
                                                                 E_{red}^0 = 1.229 \text{ V}
         2S_2O_4^{2-} + 4H_2O = 4SO_3^{2-} + 8H^+ + 4e^- E_{red}^0 = -0.527
O_2 + 2S_2O_4^{2-} + 2H_2O = 4SO_3^{2-} + 4H^+ E_{cell} = 1.229 - (-0.527) = 1.756
^{16} E = 0.222 – 0.0592 log [Cl<sup>-</sup>] = 0.197 [Cl<sup>-</sup>] = 2.64 M
17
         Cathode:
                            2H^+ + 2e^- \rightarrow H_2 E^0 = 0.00
         Anode: 2l^{-} \rightarrow l_2 + 2e^{-} E^0 = 0.535 \text{ V}
```

```
E^{0}_{cell} = E^{0}_{cat} - E^{0}_{anod} = 0.00 - 0.535 = -0.535 \text{ V}, this is an uphill reaction.
```

¹⁸ Cathode: PbSO₄ + 2e⁻ ---> Pb + SO₄²⁻

Cell Rxn and
$$K_{sp}$$
: PbSO₄ ---> Pb²⁺ + SO₄²⁻

$$E^0 = -0.355 + 0.126 = -0.229 V$$

$$\Delta G = -nFE = -RT \ln K$$

$$E^0 = 0.0592/n \log K$$

$$-0.229 = 0.0592/2 \log K_{sp}$$
 $K_{sp} = 1.8e-8$

 19 mmol Br added = 25.0 mL (0.0400 M) = 1.00

$$mmol Ag^{+} added = 20.0 mL (0.200 M) = 4.00$$

mmol Ag⁺ left after precipitation = 4.00 - 1.00 = 3.00

$$[Ag^{+}] = 3.00 \text{ mmol/} 45.0 \text{ mL} = 6.67e-2$$

$$E = E^0 - 0.0592 \log (Ag^+)$$

$$0.729 \text{ V} = \text{E}^0 - 0.0592 \log 1/(6.67\text{e}-2)$$
 $\text{E}^0 = 0.799 \text{ V}$ $\text{Ag}^+ + \text{e}^- = \text{Ag}$ $\text{E}^0 = 0.799 \text{ V}$

$$E^{0} = 0.100 - \frac{0.0592}{2} \log \frac{1}{K_{sp}}$$

21
 E = -0.141 –(-0.44) = 0.30 V

²² e)
$$rxn: AgCl(s) = Ag^+ + Cl^-$$

add the following

$$Ag(s) = Ag^{+} + e^{-}$$
 $E^{0} = 0.799 \text{ V}$

$$AgCl(s) + e- = Ag(s) + Cl^{-}$$
 $E^{0} = 0.222 \text{ V}$

$$E_{cell} = 0.222 - 0.799 V = -0.577 V$$

$$\Delta G = -RT \ln Ksp = -nFE$$

$$Ksp = 10^{(-0.577/0.0592)} = 1.79e-10$$

²³ b) A

24
 e) Ecell = Ecath – Eanod = 2.890 – 0.771 = **2.119** V

²⁵ Anode: Cd = Cd²⁺ + 2e-
$$E^0$$
 = -0.402 V
Cathode Ag⁺ + e- = Ag(s) E^0 = 0.799 V

All 1M concentration

$$E_{cell} = E_{cell}^0 = E_{cath} - E_{anod} = 0.799 - (-0.402) V = 1.201 V$$