How Students Learn

MATHEMATICS
IN THE
CLASSROOM

How do you get a fourth-grader excited about math? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning.

How Students Learn: Mathematics in the Classroom builds on the discoveries detailed in the best-selling How People Learn. Now these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness.

Organized for utility, the book explores how the principles of learning can be applied in teaching math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume.

The book shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities.

How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.

Also of Interest

How People Learn: Brain. Mind. Experience, and School: Expanded Edition 0-309-07036-8 • 385 pages • 7 x 10 • paperback (2000)

Adding It Up: Helping Children Learn Mathematics 0-309-06995-5 • 480 pages • 7 x 10 • hardback (2001)

Helping Children Learn Mathematics 0-309-08431-8 • 52 pages • 7 x 10 • paperback (2002)

THE NATIONAL ACADEMIES"

Advisers to the Nation on Science, Engineering, and Medicine

The nation turns to the National Academies—National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council—for independent, objective advice on issues that affect people's lives worldwide.

www.national-academies.org

Contents

1

	M. Suzanne Donovan and John D. Bransford	
	A Fish Story, 2	
	Learning Environments and the Design of Instruction, 12	
	Putting the Principles to Work in the Classroom, 20	
	Intent and Organization of This Volume, 21	
	Notes, 25	
	References, 26	
	References, 20	
	Part I History	
	• • • • • • • • • • • • • • • • • • •	
	(on enclosed CD; not printed in this volume)	
2	Putting Principles into Practice: Understanding History Peter J. Lee	31
	History and Everyday Ideas, 33	
	Substantive Concepts, 61	
	History That Works, 65	
	Notes, 73	
	References, 74	
3	Putting Principles into Practice: Teaching and Planning Rosalyn Ashby, Peter J. Lee, and Denis Shemilt	79
	The Reality Test, 80	
	Working with Evidence: Pilgrim Fathers and Native Americans, 84 Working with Evidence: The St. Brendan's Voyage Task, 119	
	, 0,,	

Introduction

Appendix 3A: Implications for Planning, 164 Notes, 177 References, 177

4 "They Thought the World Was Flat?": Applying the Principles of How People Learn in Teaching High School History

Robert B. Bain

Where to Begin? Transforming Topics and Objectives into Historical Problems, 181

Designing a "History-Considerate" Learning Environment:

Tools for Historical Thinking, 199

Conclusion, 209

Acknowledgments, 210

Notes, 211

References, 212

Part II Mathematics

Mathematical Understanding: An Introduction

Karen C. Fuson, Mindy Kalchman, and John D. Bransford
Principle #1: Teachers Must Engage Students' Preconceptions, 219
Principle #2: Understanding Requires Factual Knowledge and
Conceptual Frameworks, 231
Principle #3: A Metacognitive Approach Enables Student
Self-Monitoring, 236
Next Steps, 243
Notes, 246
References, 246
Suggested Reading List for Teachers, 256

257

Fostering the Development of Whole-Number Sense:
Teaching Mathematics in the Primary Grades
Sharon Griffin
Deciding What Knowledge to Teach, 259
Building on Children's Current Understandings, 267
Acknowledging Teachers' Conceptions and Partial
Understandings, 279
Revisiting Question 2: Defining the Knowledge That
Should Be Taught, 281
How Can This Knowledge Be Taught?:
The Case of Number Worlds, 282
What Sorts of Learning Does This Approach Make Possible?, 302
Summary and Conclusion, 305

	Acknowledgments, 306 Notes, 306 References, 306	
7	Pipes, Tubes, and Beakers: New Approaches to Teaching the Rational-Number System Joan Moss Rational-Number Learning and the Principles of How People Learn, 312 Instruction in Rational Number, 319 Conclusion: How Students Learn Rational Number, 341 Notes, 343 References, 345	309
8	Teaching and Learning Functions Mindy Kalchman and Kenneth R. Koedinger Addressing the Three Principles, 359 Teaching Functions for Understanding, 373 Summary, 389 Acknowledgments, 391 Notes, 392 References, 392 Other Relevant Readings, 393	351
	Part III Science	
	(on enclosed CD; not printed in this volume)	
9	Scientific Inquiry and How People Learn John D. Bransford and M. Suzanne Donovan Principle #1: Addressing Preconceptions, 399 Principle #2: Knowledge of What It Means to "Do Science," 403 Principle #3: Metacognition, 407 The How People Learn Framework, 411 Conclusion, 415 Notes, 416 References, 416	397
10	Teaching to Promote the Development of Scientific Knowledge	
	and Reasoning About Light at the Elementary School Level Shirley J. Magnusson and Annemarie Sullivan Palinscar The Steel Children (22)	421
	The Study of Light, 422 The Study of Light Through Inquiry, 426	
	Supporting Learning Through Cycles of Investigation 460	