PHYS 542 Homework 5

1. Airy's Problem Revisited Airy's problem is the transmission of a monochromatic plane wave through a transparent film (ϵ, μ) of thickness d. The text solved this problem by summing an infinite number of single-interface Fresnel reflections and transmissions. For this problem specialize to the case of normal incidence and use the matching conditions and a five-wave analysis (a forwards going wave in the z > d vacuum, a forward-going and a backward-going wave in the film to show that the fraction of the incident power transmitted into the vacuum through the z = d surface of the film is:

$$|T|^2 = \left| \frac{4ZZ_0}{(Z+Z_0)^2 - (Z-Z_0)^2 e^{2ikd}} \right|^2$$

where Z_0 and Z are the wave impedances in the vacuum and in the film.

- 2. Refraction into a Good Conductor Consider plane wave refraction from a non-conducting medium (ϵ, μ) into a conducting medium (ϵ, μ, σ) . Ohmic loss requires that the refractive wave vector \mathbf{k}_2 be complex. The figure below shows a proposed refraction geometry where $\mathbf{k}_2 = \mathbf{q} + i\kappa$
- (a) Explain why κ points in the +z direction and why the angle of incidence still equals the angle of reflection outside the conductor.
- (b) Derive the generalization of Snell's law for this problem. Use appropriate dispersion relations to re-write the appropriate wavevector magnitudes in terms of σ , ω , ϵ , μ and the relevant angles. You do not have to simplify this relationship to any specific form.

