PHYS 542 Homework 7

1. Limits on the Photon Mass If the photon had a mass M, the dispersion relation for electromagnetic waves in vacuum would be

$$
\omega^{2}=c^{2} k^{2}+\left(M c^{2} / \hbar\right)^{2}
$$

A limit on $M c^{2} \ll \hbar \omega \simeq \hbar c k$ can be determined by measuring the difference in arrival times of the highest- and lowest-frequency components of a wave packet received from an astrophysical source that emits EM radiation in bursts. Estimate δt from the proposed dispersion relation. Should one collect data from a radio source or from a γ-ray source to obtain the lowest limit on M ? Why?

2 Negative Group Velocity An infinite slab of material with index of refraction $n(\omega)$ and group velocity $v_{g}<0$ occupies a space $0<z<a$. The rest of space is a vacuum.
(a) Consider a plane wave with electric field $\mathbf{E}=\hat{\mathbf{x}} E_{0} e^{i \omega(z / c-t)}$ incident on the slab from $z<0$. Use $n(\omega)$ to write formulae for the wave in regions $0<z<a$ and $z>a$. Assume $n(\omega)$ is not far from unity so reflection from the slab surfaces can be ignored. Write these expressions in a way that clearly distinguishes the frequency-dependent terms.
(b) Make the group velocity approximation $\omega n(\omega) \simeq \omega_{0} n(\omega)+\left(c / v_{g}\right)\left(\omega-\omega_{0}\right)$ and write formulae for the field $E(z, t)$ in all three regions.
(c) Let $E(z<0, t)=f(z / c-t)=\int d \omega \hat{E}(z, \omega) e^{-i \omega t}$ be a wave packet incident on the slab. Find expressions for $E(z, t)$ for $0<z<a$ and $z>a$ with the form $e^{i \Phi} f(x)$ using the Fourier components derived in part (b), where x is a function of z and t that might be different for the three regions.
(d) Choose $f(x)=E_{0} \delta(x)$, write down the field and verify (1) that the packet travels "backwards" through the slab and (2) that the packet exits the slab before it enters.

