Homework 8 Solutions

1. An Uncharged Rotator

Two equal and opposite charges are attached to the ends of a rod of length s. The rod rotates counterclockwise with angular speed $\omega=c k$. The electric dipole moment of the system at time $t=0$ has the value $\mathbf{p}_{0}=q s \hat{\mathbf{y}}$.
(a) Show that the electric field in the radiation zone is:

$$
\mathbf{E}_{\mathrm{rad}}(r, \theta, \phi, t)=\frac{k^{2} p_{0}}{4 \pi \epsilon_{0}}(i \cos \theta \hat{\theta}-\hat{\phi}) \frac{e^{i(k r-\omega t-\phi)}}{r}
$$

. Explain why the observers' azimuth angle ϕ appears in the phase.
(b) Write out the (real) electric field on the positive $x y$ and z axes. Identify the state of polarization observed in each case and make a physical argument why each might be expected.
(c) Find the time-averaged rate at which energy is radiated per unit solid angle and the total rate at which energy is radiated to infinity.

2. Radiation Recoil

(a) Explain why a localized (and entirely classical) source of charge and current does not recoil when it emits dipole radiation.
(b) Is recoil ever possible for a classical radiation source? If not, explain why not. If so, give an example.

