PHYS 542 Handout 4 Supplement

Superpositions of waves and Free-space diffraction

In general, one rarely has pure monochromatic plane waves, but since these a complete orthogonal basis set, you can often write other waves as an integral over these types of waves:

$$
\begin{gathered}
\mathbf{E}(\mathbf{r}, t)=\Re\left[\frac{1}{(2 \pi)^{3}} \int d^{3} k \mathbf{E}_{\mathbf{k}} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}\right] \\
c \mathbf{B}(\mathbf{r}, t)=\Re\left[\frac{1}{(2 \pi)^{3}} \int d^{3} k\left(\hat{\mathbf{k}} \times \mathbf{E}_{\mathbf{k}}\right) e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}\right]
\end{gathered}
$$

In this case, the average energy density and Poynting vectors are:

$$
\begin{aligned}
\left\langle u_{e m}\right\rangle & =\frac{\epsilon_{0}}{2} \frac{1}{(2 \pi)^{3}} \int d^{3} k\left|\mathbf{E}_{\mathbf{k}}\right|^{2} \\
c\left\langle P_{e m}\right\rangle & =\frac{\epsilon_{0}}{2} \frac{1}{(2 \pi)^{3}} \int d^{3} k \hat{\mathbf{k}}\left|\mathbf{E}_{\mathbf{k}}\right|^{2}
\end{aligned}
$$

We want to create a EM wave packet with a single frequency ω, which means that all the components must have the same k. However, they can be oriented in different directions, so they have the components $\left[q_{x}, q_{y}, \sqrt{k^{2}-q_{x}^{2}-q_{y}^{2}}\right.$, which can be approximated as $\left[q_{x}, q_{y}, k-\left(q_{x}^{2}-q_{y}^{2}\right) / 2 k\right]$ provided $q_{x}, q_{y} \ll k$, so

$$
\mathbf{E}(\mathbf{r}, t)=\int d q_{x} d q_{y} \mathbf{E}_{\mathbf{q}} e^{i\left(q_{x} x+q_{y} y-\left(q_{x}^{2}+q_{y}^{2}\right) z / 2 k+k z-\omega t\right)}
$$

or, equivalently:

$$
\mathbf{E}(\mathbf{r}, t)=e^{i(k z-\omega t)} \int d q_{x} d q_{y} \mathbf{E}_{\mathbf{q}} \mathrm{e}^{i\left(q_{x} x+q_{y} y-\left(q_{x}^{2}+q_{y}^{2}\right) z / 2 k\right)}
$$

So this does behave like a plane wave. We just need to choose $\mathbf{E}_{\mathbf{q}}$ so that we get something like $\mathbf{E}_{\mathbf{0}} e^{-\left(x^{2}+y^{2}\right) / w_{0}^{2}}$ when $z=0$. A choice that does this is $\mathbf{E}_{\mathbf{q}}=w_{0}^{2} E_{0} \hat{\mathbf{x}} e^{-w_{0}^{2}\left(q_{x}^{2}+q_{y}^{2}\right) / 4}$. Let's try it out at $z=0$ where

$$
\begin{gathered}
\mathbf{E}(\mathbf{r}, t)=e^{i(k z-\omega t)} w_{0}^{2} E_{0} \hat{\mathbf{x}} \int d q_{x} d q_{y} e^{-w_{0}^{2}\left(q_{x}^{2}+q_{y}^{2}\right) / 4+i\left(q_{x} x+q_{y} y\right)} \\
\mathbf{E}(\mathbf{r}, t)=e^{i(k z-\omega t)} w_{0}^{2} E_{0} \hat{\mathbf{x}}\left[\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}\right]\left[\int d q_{y} e^{-w_{0}^{2} q_{y}^{2} / 4+i q_{y} y}\right]
\end{gathered}
$$

Now to evaluate the integrals, we need to "complete the squares"

$$
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\int d q_{x} e^{-\left(w_{0}^{2} / 4\right)\left(q_{x}^{2}-2\left(2 i x / w_{0}^{2}\right) q_{x}\right)}
$$

$$
\begin{gathered}
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\int d q_{x} e^{-\left(w_{0}^{2} / 4\right)\left(q_{x}^{2}-2\left(2 i x / w_{0}^{2}\right) q_{x}-4 x^{2} / w_{0}^{4}+4 x^{2} / w_{0}^{4}\right)} \\
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\left[\int d q_{x} e^{-\left(w_{0}^{2} / 4\right)\left(q_{x}^{2}-2\left(2 i x / w_{0}^{2}\right) q_{x}-4 x^{2} / w_{0}^{4}\right)}\right] e^{\left.-x^{2} / w_{0}^{2}\right)} \\
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\left[\int d q_{x} e^{-\left(w_{0}^{2} / 4\right)\left(q_{x}-2 i x / w_{0}^{2}\right)^{2}}\right] e^{-x^{2} / w_{0}^{2}} \\
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\left[\int d q_{x} e^{-\left[\left(w_{0} / 2\right) q_{x}-i x / w_{0}\right]^{2}}\right] e^{-x^{2} / w_{0}^{2}} \\
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\frac{2}{w_{0}}\left[\int d \mathcal{X} e^{-\mathcal{X}^{2}}\right] e^{-x^{2} / w_{0}^{2}} \\
\int d q_{x} e^{-w_{0}^{2} q_{x}^{2} / 4+i q_{x} x}=\frac{2}{w_{0}} \sqrt{\pi} e^{-x^{2} / w_{0}^{2}}
\end{gathered}
$$

and so we get the desired shape of the beam at $z=0$

$$
\mathbf{E}(\mathbf{r}, t)=e^{i(k z-\omega t)} E_{0} \hat{\mathbf{x}} \frac{4 \pi w_{0}^{2}}{w_{0}^{2}} e^{-x^{2} / w_{0}^{2}-y^{2} / w_{0}^{2}}
$$

But what happens at other values of z ?, well now we have to do the full integral:

$$
\mathbf{E}(\mathbf{r}, t)=e^{i(k z-\omega t)} w_{0}^{2} E_{0} \hat{\mathbf{x}}\left[\int d q_{x} e^{-\left(w_{0}^{2} / 4+i z / 2 k\right) q_{x}^{2}+i q_{x} x}\right]\left[\int d q_{y} e^{-\left(w_{0}^{2} / 4-i z / 2 k\right) q_{y}^{2} /+i q_{y} y}\right]
$$

again, we can evaluate the integrals by completing the squares as above, and in this case, we get:

$$
\mathbf{E}(\mathbf{r}, t)=E_{0} \hat{\mathbf{x}} e^{i(k z-\omega t)} \frac{4 \pi w_{0}^{2}}{w_{0}^{2}+i 2 z / k} e^{-\left(x^{2}+y^{2}\right) /\left(w_{0}^{2}+i 2 z / k\right)}
$$

Now see that when $z / k \gg w_{0}^{2}$ we get something like:

$$
\mathbf{E}(\mathbf{r}, t)=E_{0} \hat{\mathbf{x}} e^{i(k z-\omega t)} \frac{-i 2 \pi w_{0}^{2} k}{z} e^{-i\left(x^{2}+y^{2}\right) /(2 z / k)} e^{-\left(x^{2}+y^{2}\right) /\left(4 z^{2} / k^{2} w_{0}^{2}\right)}
$$

So the width is $2 z / k w_{0}$, which means that the smaller the width w_{0}, the more the beam spreads out at larger distances. Also, there is a phase shift across the beam because it is beginning to become a spherical beam. Finally note the energy density is starting to go like $1 / z^{2}$.

