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ABSTRACT
Density waves in Saturn’s rings are usually tightly wrapped spiral patterns generated by
resonances with either Saturn’s moons or structures inside the planet. However, between the
Barnard and Bessel Gaps in the Cassini Division (i.e. between 120 240 and 120 300 km from
Saturn’s spin axis), there are density variations that appear to form an axisymmetric density
wave consisting of concentric zones of varying densities that propagate radially through the
rings. Axisymmetric waves cannot be generated directly by a satellite resonance, but instead
appear to be excited by interference between a nearby satellite resonance and normal-mode
oscillations on the inner edge of the Barnard Gap. Similar axisymmetric waves may exist
just interior to other resonantly confined edges that exhibit a large number of normal modes,
including the Dawes ringlet in the outer C ring and the outermost part of the B ring.
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1 IN T RO D U C T I O N

Among the best understood classes of features in Saturn’s rings are
density waves. These structures are usually tightly wound multi-
armed spiral patterns that are generated at mean-motion resonances
with either Saturn’s moons or structures in the planet’s interior. The
theory behind these patterns is very well developed (Goldreich &
Tremaine 1982; Shu 1984), enabling ring parameters like the local
surface mass density to be derived from observable wave properties
(Cuzzi, Lissauer & Shu 1981; Esposito, Ocallaghan & West 1983;
Tiscareno et al. 2007; Esposito 2010). At the same time, the
predictable properties of these waves allow wavelet-based filtering
techniques to identify wave-like structures that are not apparent in
individual observations (Hedman & Nicholson 2016). These tools
are also starting to reveal unexpected waves with unusual properties,
including several features that appear to be axisymmetric density
waves (i.e. waves with azimuthal wavenumber m = 0).

The clearest example of an axisymmetric density wave lies
between the Bessel and Barnard Gaps in the Cassini Division. This
region had been designated the 1.994Rs ringlet prior to the Cassini
mission (Nicholson, Cooke & Pelton 1990; French et al. 1993),
when the two gaps were thought to be a single gap inhabited by
a ringlet nearly as wide as the gap. However, Cassini observations
later revealed that the Bessel and Barnard Gaps likely had different
dynamical origins (Colwell et al. 2009a; French et al. 2010, 2016a;
Hedman et al. 2010) and so it seemed more appropriate to consider
them as separate gaps. Hence the region in between them was not
given a formal name.

⋆ E-mail: mhedman@uidaho.edu

As shown in Fig. 1, the region between the Bessel and Barnard
Gaps contains quasi-periodic optical depth variations and the loca-
tions of the peaks and troughs vary from one observation to another.
This is reminiscent of typical density waves, but this particular
structure is anomalous in that there is no resonance with any of
Saturn’s moons that would generate this wave naturally. While the
Prometheus 5:4 inner Lindblad resonance lies at 120 304 km (near
the inner edge of the Barnard Gap), the wave generated by this
resonance should propagate outwards, away from the region of
interest. (In fact, this resonance instead excites a five-lobed radial
variation in the edge’s position: see French et al. 2016a).

A wavelet-based analysis of this structure provides strong ev-
idence that it is an axisymmetric density wave consisting of
concentric zones of varying density. Such a wave is a valid solution
to the relevant equations of motion for ring material and the
standard theory of density waves can naturally be extended to this
case, yielding sensible estimates of the local surface mass density.
However, such a structure is not easily excited by any mean-motion
resonance with a satellite, because the gravitational perturbations
from a moon must always vary with longitude. An axisymmetric
wave instead requires some process that induces all the particles to
have finite orbital eccentricities and to pass through pericentre at
the same time, regardless of longitude. We propose that interference
among the observed normal-mode oscillations in the position of the
Barnard Gap’s inner edge can give rise to perturbations with the
correct form to generate an axisymmetric density wave.

This wave would not be the first axisymmetric structure to be
found in planetary rings. Prior analyses of occultation data for the
rings of Uranus revealed that the γ ring exhibits axisymmetric
variations in its radial position (French et al. 1991). The γ ring is
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Figure 1. A few representative optical depth profiles of the region between
the Bessel and Barnard Gaps derived from stellar occultations obtained by
the Visual and Infrared Mapping Spectrometer (VIMS) instrument on board
the Cassini spacecraft.

Figure 2. A few representative optical depth profiles of the Dawes ringlet
derived from stellar occultations obtained by the VIMS instrument on board
the Cassini spacecraft.

also found close to a mean motion resonance with one of Uranus’s
moons (specifically, the 6:5 inner Lindblad resonance with Ophelia),
so the dynamical environment of the γ ring is similar to that of
the material around the Barnard Gap. The axisymmetric motion
of Uranus’s γ ring and the axisymmetric wave in the Cassini
Division could therefore represent a previously unrecognized class
of ring features excited in the vicinity of resonantly confined ring
material.

Indeed, other resonantly confined edges of Saturn’s rings, like the
outer edges of the B ring and the Dawes ringlet (which are perturbed
by the Mimas 2:1 and 3:1 inner Lindblad resonances, respectively),
are associated with periodic optical depth variations that may be
additional examples of axisymmetric density waves. Unfortunately,
the wavelet-based techniques that could characterize the patterns
near the Barnard Gap do not appear to work on these structures,
making their interpretation less certain.

Fig. 2 shows that the Dawes ringlet contains periodic opacity

Figure 3. A few representative optical depth profiles of the B ring outer
edge derived from stellar occultations obtained by the VIMS instrument on
board the Cassini spacecraft.

variations of similar scale to those seen interior to the Barnard Gap.
These variations also extend interior to the Mimas 3:1 and Pandora
2:1 resonances in this region and so cannot just be density waves
driven by those satellites (which would propagate outwards). This
feature might be an axisymmetric density wave, but other structures
in the region complicate its interpretation.

The outer part of the B ring is far more complex (see Fig. 3) and is
perturbed by a number of strong resonances. However, some quasi-
periodic signals can be seen around 117 300 km. These are not in
the right place to be generated by the known satellite resonances.
Furthermore, imaging data support the idea that these structures are
another example of an axisymmetric density wave (see Section 5.1.3
below).

The rest of this article provides a detailed analysis of these
structures. Section 2 provides the relevant theoretical background
for density waves, in order to clarify the expected properties of
axisymmetric waves and how they can be distinguished from
other ring features. Section 3 describes our analysis of the region
between the Bessel and Barnard Gaps and the evidence that there
is an axisymmetric density wave in this region. Section 4 then
discusses how this sort of axisymmetric wave could be excited
by interference among the various normal modes on resonantly
confined gap edges. Section 5 examines the material in the vicinity
of other resonantly confined gap edges and whether these might also
contain axisymmetric density waves. Finally, Section 6 summarizes
the results and implications of these analyses.

2 TH E O R E T I C A L BAC K G RO U N D

The theory behind spiral density waves is described in several classic
articles (e.g. Shu 1984). However, for the sake of convenience we
will review the relevant equations here in order to clarify how
axisymmetric waves should behave.

Generically, density waves arise when a dense ring of material
is subjected to a periodic perturbing force that generates a term U
in the potential that varies periodically with time t and/or inertial
longitude λ:

U ∝ exp[i(|m|λ − ωt)], (1)

MNRAS 485, 13–29 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/13/5303751 by U
niversity of Idaho Law

 Library user on 24 June 2019



Axisymmetric density waves 15

where ω is the perturbation frequency and m is an integer that can be
positive, negative or 0, with m = 0 corresponding to an axisymmetric
perturbation.1 This sort of perturbation has its strongest effect on
the orbital motion of the ring particles at locations where the ring-
particle radial epicyclic frequency κ and orbital mean motion n
satisfy the relationship (for either choice of sign):

ω = |m|n ∓ κ. (2)

At these locations, we can rewrite the frequency ω in equation (1)
in terms of the mean motion and radial epicyclic frequency.
Furthermore, for each ring particle, λ − nt is a constant and so
the perturbation has the following form:

U ∝ exp[i(|m|λ − |m|nt ± κt)] = exp[±iκt]. (3)

The perturbations on each particle therefore have the same fre-
quency as the particle’s radial epicyclic motion, which is the
appropriate condition for a Lindblad resonance that will excite and
organize ring-particle epicyclic motions. Furthermore, if the ring
has a finite surface mass density σ where this resonance occurs,
then these localized disturbances will propagate radially across the
rings, forming the pattern of surface mass density variations known
as a density wave.

In general, the density variations associated with any density
wave can be quantified using the following expression:

σ = σ0 + ℜ
[
Aσ ei(φr+φλt )] , (4)

where σ 0 is the background surface mass density and Aσ is the
(radius-dependent) amplitude of the density variations, while φλt

and φr are phase parameters that depend on longitude/time and
radius, respectively. The functional forms of these two phases are
determined by the characteristics of the perturbation and the ring’s
background surface mass density.

First, consider the longitude/time-dependent phase φλt. Steady-
state solutions for the density variations only exist if the pattern as
a whole tracks the potential, so φλt must have the same form as the
phase in the perturbing potential shown in equation (1):

φλt = |m|λ − ωt . (5)

The entire pattern therefore has azimuthal wavenumber |m|. Also, if
m ̸= 0, then this pattern rotates at a speed (p = ω/|m|, which can be
written in terms of the mean motion and radial epicyclic frequency
at the resonant location nL and κL:

(p(m ̸= 0) = nL ∓ 1
|m|

κL = nL − 1
m

κL, (6)

where for the second equality we have chosen the sign of m such
that positive m corresponds to situations where the pattern speed
is slower than the orbital mean motion (i.e. an inner Lindblad
resonance), while negative m corresponds to cases where the
pattern speed is faster than the local orbital mean motion (i.e. an
outer Lindblad resonance). Of course, for the axisymmetric case
(m = 0) there is no sensible definition of a real azimuthal pattern
speed. However, since in this case φλt = −ωt, a reasonable analogue
of the pattern speed is

(p(m = 0) = ω = κL, (7)

where the second equality uses the general definition of ω and we
must choose the positive sign in order to ensure that (p and ω are
sensibly positive.

1Note that the sign convention used here for the phase parameter in the
exponential is the opposite of that used in Shu (1984).

While φλt depends only on the properties of the perturbation,
the radius-dependent part of the wave phase φr is determined by a
dispersion relation that relates the wave frequency ω to the radial
wavenumber of the pattern k, which is simply the radial derivative
of the wave phase at a fixed longitude and time:

k(r) = ∂φr

∂r
. (8)

In the limit where the velocity dispersion of the ring particles is
negligible (which is appropriate for the ring regions considered
here), the relevant dispersion relation is (Shu 1984)

(ω − |m|n)2 = κ2 − 2πGσ0|k|. (9)

So long as the wave is observed at radii r close to the radius of the
resonance rL (i.e. |r − rL| < <rL) and the apsidal precession rate is
much less than the mean motion (i.e. κ ≃ n), this expression yields
the standard expression for the wavenumber of a wave (valid for all
m ̸= 1):

|k(r)| = 3(m − 1)MP(r − rL)
2πσ0r

4
L

, (10)

where MP is the mass of the planet. Note that if m > 1 then the
right-hand side of this equation is only positive if r > rL, which is
consistent with the fact that such density waves only exist outside
inner Lindblad resonances. By contrast, if m < 1 (including m = 0),
then the wave only exists interior to the resonance. Furthermore, in
order for the waves to propagate away from the resonant location
in the appropriate direction, their group velocity vg = ∂ω/∂k also
needs to be positive if m > 1 and negative if m < 1. Taking the
appropriate derivatives of equation (9) reveals that these conditions
will be satisfied provided k is positive (again, opposite to the Shu
1984 convention). Note that, since m = 0 waves behave like those
generated by standard outer Lindblad resonances in this regard, it
is sensible to regard m = 0 resonances as members of that group.2

Also, for all m, the magnitude of the group velocity is given by the
standard expression

|vg| = πGσ0

κL

. (11)

Since k = ∂φr/∂r is positive for both types of wave, the phase
always increases with increasing radius, which is consistent with
how phases are defined for the wavelet transformations (see below).
Furthermore, at a fixed longitude, the location of maxima or minima
will drift outwards over time for all m. In other words, the phase
velocity vp = ω/k is positive-definite for both types of wave,
consistent with all the waves with m ̸= 0 being trailing spiral
patterns. Finally, we can integrate equation (10) for |k| = k to
obtain the following expression for the radial phase parameter in
the vicinity of the resonance:

φr (r) = 3(m − 1)MP(r − rL)2

4πσ0r
4
L

+ φ0, (12)

where φ0 is a constant phase offset.
In summary, standard density-wave theory predicts that axisym-

metric m = 0 density waves should have the following properties.

(i) They should exist interior to the resonant location where
ω = κ .

2Note also that the dispersion relation in equation (9) implies that m =
0 waves can only propagate where κ > |ω|, i.e. interior to the Lindblad
resonance.
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(ii) They should have negative group velocities, which means
they should propagate and carry energy and angular momentum
inwards.

(iii) They should have positive phase velocities, which means the
positions of individual peaks and troughs should move outwards
over time.

(iv) They should have radial wavenumbers given by the expres-
sion k(r) = 3MP|r−rL|

2πσ0r4
L

.

3 A NA LY S I S O F TH E R E G I O N B E T W E E N T H E
BARNARD AND BESSEL G APS

The region between the Barnard and Bessel Gaps shown in Fig. 1
contains a feature that can be identified most convincingly as an
axisymmetric density wave based on wavelet analysis of multiple
occultation profiles. The relevant occultation data are described in
Section 3.1, while Section 3.2 provides the wavelet-based methods
employed to characterize this particular pattern. Finally, Section 3.3
presents the resulting evidence that the region interior to the Barnard
Gap does indeed contain an axisymmetric wave.

3.1 Occultation observations

This examination of the region around the Barnard Gap uses stellar
occultation data obtained by the Visual and Infrared Mapping
Spectrometer (VIMS) on board the Cassini spacecraft (Brown
et al. 2004). While in its standard operating mode, VIMS obtains
spatially resolved spectra of various objects in the Saturn system,
this instrument can also operate in a mode in which it measures the
spectrum of a star repeatedly as the rings pass between it and the
spacecraft. In this mode, a precise timestamp is appended to each
spectrum to facilitate reconstruction of the observation geometry
(Brown et al. 2004).

We compute both the radius and inertial longitude of the rings
that the starlight passed through using a combination of the timing
information accompanying each brightness measurement and the
appropriate SPICE kernels (Acton 1996). Note that the information
encoded in these kernels has been determined to be accurate to
within one kilometre and fine-scale adjustments based on the
positions of circular ring features enable these estimates to be refined
to an accuracy of ∼ 150 m (French et al. 2017).

Table 1 lists the 101 occultation observations that we used in this
analysis. This includes essentially all the occultations obtained prior
to 2017 that covered the relevant part of the Cassini Division with
adequate resolution and signal-to-noise to discern the quasi-periodic
structures shown in Fig. 1. This large set of occultations spans
an entire decade and includes observations obtained over a broad
range of inertial longitudes, which ensures that we can identify
the m-number and pattern speed of wave-like structures in the ring
uniquely. However, for some aspects of this analysis we focus our
attention on a subset of these observations: the occultations of the
star γ Crucis obtained between Cassini ‘revs’ (that is, orbits) 71
and 102 in late 2008 and early 2009. All of these occultations use
the same star and occurred at about the same inertial longitude
and have very good signal-to-noise ratios, all of which facilitates
comparisons among these profiles.

For this particular study, we only consider data obtained at wave-
lengths between 2.87 and 3.00 µm, where the rings are especially
dark and so provide a minimal background to the stellar signal.
Together with the highly linear response of the instrument (Brown
et al. 2004), this low ring background means that the raw signal

is directly proportional to the transmission T through the rings. In
practice, the transmission is estimated by normalizing the signal to
unity during a time when the star was not obscured by the rings.
Whenever possible, the selected time period corresponds to when
the star was visible through the Huygens gap in the Cassini Division
(i.e. 117 700–117 750 km from Saturn’s centre); if this region was
not available, a time period when the star was outside the main rings
(i.e. more than 145 000 km from Saturn’s centre) was used. Also,
any instrumental background level was removed by subtracting a
constant offset from the data equal to the mean signal level when the
star was behind an opaque part of the B ring (105 700–106 100 km).
The resulting transmission values T can then be transformed into
the ring’s normal optical depth τ n using the standard expression
τ n = −ln (T) sin |B|, where B is the elevation angle of the star above
the ring (see Table 1). Note that, for low optical depth regions
like the Cassini Division, τ n should be largely independent of the
observation geometry and directly proportional to the surface mass
density σ .

3.2 Wavelet analysis methods

We analyse these occultation data using the wavelet-based tools
developed in Hedman & Nicholson (2016) for isolating wave
signatures in Saturn’s B ring. These tools are designed to take
multiple occultation profiles and combine the data in a manner that
isolates signals with pattern speeds and m-values consistent with
specified density waves. Details of this approach are provided in
Hedman & Nicholson (2016), but for the sake of completeness we
will summarize the basic method here.

We begin by taking each occultation profile, interpolating the
transmission estimates on to a regular grid of radii with a spacing of
100 metres, converting the transmission values to normal optical
depth3 and transforming the profile into a wavelet using the
IDL wavelet routine (Torrence & Compo 1998) with a Morlet
mother wavelet and parameter ω0 = 6. This yields a complex two-
dimensional wavelet for each profile Wi = Aiei+i , where Wi , Ai

and +i are all functions of both radius r and radial wavenumber
k. For the signal from a density wave, the wavelet phase +i is
equivalent to the local wave phase φr + φλt. Given the observed
longitude λi and observation time ti for each occultation, we can
compute the following phase parameter:

φi = |m|λi − ω(ti − t0), (13)

where |m| and ω are the assumed m-number and frequency of the
perturbation and t0 is an arbitrary epoch time. Here t0 corresponds to
2008-001T12:00:00 UTC, in order to be consistent with the epoch
time used by French et al. (2016a). For a wave with the selected
m and ω values, the phase difference +i − φi will be the same
function of radius r (φr) for every occultation and so we can define
a phase-corrected wavelet:

Wφ,i(r, k) = Wi(r, k)e−iφi = Ai(r, k)ei(+i (r,k)−φi ). (14)

3Note that Hedman & Nicholson (2016) applied the wavelet transformation
directly to the transmission profiles instead of the optical depth profiles.
This was a sensible choice, because that work only considered occultations
obtained with similar geometries and ring regions with high optical depth.
However, in this case we are considering a broader range of occultation
geometries and a ring region with low optical depth. Converting the profiles
to optical depth helps make the signals observed at different times more
comparable and simplifies the interpretation of the reconstructed wave
profiles.

MNRAS 485, 13–29 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/13/5303751 by U
niversity of Idaho Law

 Library user on 24 June 2019



Axisymmetric density waves 17

Table 1. Summary of occultations used in this study.

Star Reva i/eb Bc ETd Longitudee m = 0 phasef

(degrees) (seconds) (degrees) (degrees)

RHya 036 i −29.4 220943101. 195.4 349.6
alpSco 013 i −32.2 177810304. 288.6 324.7
alpSco 013 e −32.2 177817667. 358.0 262.6
alpSco 029 i −32.2 212528274. 194.6 359.9
alpAur 041 i 50.9 227942859. 8.9 27.2
RCas 065 i 56.0 262010525. 29.6 144.0
gamCru 071 i −62.3 266187755. 186.7 213.3
gamCru 072 i −62.3 266804308. 186.3 56.2
gamCru 073 i −62.3 267420458. 186.0 262.6
gamCru 077 i −62.3 269852643. 185.1 281.2
gamCru 078 i −62.3 270461132. 184.9 192.1
betGru 078 i −43.4 270509701. 263.3 142.7
RSCnc 080 i 30.0 271864841. 56.1 240.0
RSCnc 080 e 30.0 271884854. 155.6 71.3
gamCru 081 i −62.3 272314456. 183.2 50.1
gamCru 082 i −62.3 272950229. 182.9 91.0
RSCnc 085 i 30.0 275048824. 57.9 41.5
RSCnc 085 e 30.0 275068331. 153.4 237.1
gamCru 086 i −62.3 275497768. 182.2 217.3
RSCnc 087 i 30.0 276322450. 58.8 105.9
RSCnc 087 e 30.0 276341685. 152.5 303.7
gamCru 089 i −62.3 277402848. 181.9 359.0
gamCru 093 i −62.3 280038476. 203.3 102.7
gamCru 094 i −62.3 280675202. 192.0 135.7
epsMus 094 i −72.8 280700017. 257.0 286.5
epsMus 094 e −72.8 280717828. 316.7 136.4
gamCru 096 i −62.3 282008576. 187.6 56.4
gamCru 097 i −62.3 282697254. 187.5 11.4
gamCru 100 i −62.3 285027485. 213.1 169.4
gamCru 101 i −62.3 285854639. 213.1 37.1
gamCru 102 i −62.3 286679833. 212.9 281.4
betPeg 104 i 31.7 288910932. 353.7 195.0
RCas 106 i 56.0 291029840. 50.6 334.3
betPeg 108 i 31.7 292213793. 4.3 74.5
alpAur 110 i 50.9 295141170. 317.1 239.1
alpAur 110 e 50.9 295160215. 241.7 78.6
alpSco 115 i −32.2 302010739. 170.6 294.1
betPeg 170 e 31.7 397982124. 87.5 251.9
betPeg 172 i 31.7 401611701. 302.8 257.5
lamVel 173 i −43.8 403829302. 131.2 284.9
RLyr 176 i 40.8 407915130. 219.9 44.6
RLyr 176 e 40.8 407945440. 164.1 149.1
WHya 179 i −34.6 411898308. 130.1 309.6
RLyr 180 i 40.8 412507880. 217.2 211.4
RLyr 180 e 40.8 412535706. 166.4 336.9
WHya 180 i −34.6 413047699. 130.4 341.2
WHya 181 i −34.6 414196938. 130.4 14.0
RHya 185 i −29.4 418337590. 45.1 31.6
RHya 185 e −29.4 418351569. 329.7 273.8
RCas 185 i 56.0 418059013. 313.3 219.8
muCep 185 e 59.9 418027873. 67.6 122.3
WHya 186 e −34.6 419161471. 292.1 286.9
RDor 186 i −56.3 419057192. 161.2 85.9
gamCru 187 i −62.4 419913820. 130.8 65.2
gamCru 187 e −62.4 419936428. 246.4 234.7
RDor 188 i −56.3 420711012. 160.7 185.6
RDor 188 e −56.3 420716266. 195.7 141.3
WHya 189 e −34.6 421642104. 291.2 257.2
RCar 191 i −63.5 423385180. 126.8 324.5
RCas 191 i 56.0 423126448. 291.5 345.4
muCep 191 i 59.9 423048531. 286.9 282.1
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Table 1 – continued

Star Reva i/eb Bc ETd Longitudee m = 0 phasef

(degrees) (seconds) (degrees) (degrees)

muCep 193 i 59.9 425115241. 287.0 141.4
RCas 194 e 56.0 426266707. 89.6 155.5
2Cen 194 e −40.7 426591441. 249.1 298.2
muCep 195 i 59.9 427182862. 335.0 353.0
WHya 196 i −34.6 430037069. 157.8 54.3
WHya 196 e −34.6 430051310. 228.2 294.3
WHya 197 i −34.6 432104346. 158.7 268.8
WHya 197 e −34.6 432118271. 227.3 151.5
RLyr 198 i 40.8 435185387. 267.4 218.1
L2Pup 199 e −41.9 438488221. 318.4 97.9
RLyr 199 i 40.8 439304272. 248.7 59.2
RLyr 199 e 40.8 439331815. 132.9 187.0
RLyr 200 i 40.8 442043470. 264.0 9.9
L2Pup 201 i −41.9 446129569. 96.3 127.4
RLyr 202 i 40.8 447535799. 303.7 154.0
RLyr 202 e 40.8 447559049. 70.3 318.0
lamVel 203 i −43.8 449043024. 40.0 49.3
lamVel 203 e −43.8 449096026. 336.7 322.5
L2Pup 205 i −41.9 456837673. 130.3 226.6
RLyr 206 i 40.8 458836881. 294.6 294.9
RLyr 208 e 40.8 464399829. 64.3 203.7
WHya 236 i −34.6 517599124. 116.5 336.1
2Cen 237 i −40.7 519786996. 96.4 254.1
2Cen 237 e −40.7 519835092. 28.8 208.7
alpSco 237 i −32.2 520137664. 228.1 178.2
alpSco 237 e −32.2 520153854. 270.7 41.8
betPeg 237 i 31.7 520424269. 265.5 282.4
betPeg 237 e 31.7 520430571. 231.7 229.3
alpSco 238 i −32.2 522206348. 229.6 20.9
alpSco 238 e −32.2 522221476. 269.2 253.4
alpSco 239 i −32.2 523688965. 135.7 123.6
RCas 239 i 56.0 523881209. 29.9 303.1
RCas 239 e 56.0 523893640. 91.9 198.3
rhoPer 239 e 45.3 523938719. 148.2 178.4
alpSco 241 i −32.2 525831418. 112.4 64.4
alpSco 241 e −32.2 525849007. 2.4 276.2
alpSco 243 e −32.2 527916676. 1.8 127.4
RCas 243 i 56.0 528004792. 351.2 104.6
alpSco 245 i −32.2 529597290. 108.3 1.1
alpSco 245 e −32.2 529610004. 359.1 254.0
gamCru 245 e −62.4 529546263. 296.8 71.3

Notes:
aCassini orbit around Saturn.
b i=ingress portion of occultation, e = egress portion of occultation.
c Ring opening angle to the star (positive numbers correspond to stars in Saturn’s northern
hemisphere).
d Ephemeris time in seconds past J2000 (TDB) when the spacecraft observed the inner edge of the
Barnard Gap.
e Inertial longitude measured from the ascending node of Saturn’s ringplane on the J2000 reference
plane.
f Expected phase of an m = 0 wave launched from the Prometheus 5 : 4 resonance (i.e. with ω =
728.28◦ day−1), measured relative to the epoch time 2008-001T12:00:00 (ET 252460865.184).

For any signal with the selected values of m and ω, the phase of this
corrected wavelet should be the same for all occultation profiles.
The average phase-corrected wavelet of N profiles,

⟨Wφ(r, k)⟩ = 1
N

N∑

i=1

Wφ,i(r, k), (15)

will therefore be non-zero for such patterns, while any other
structure will average to zero. Only patterns with the desired m
and ω should therefore remain in the power of the average phase-

corrected wavelet,

Pφ(r, k) = |⟨Wφ(r, k)⟩|2 =
∣∣∣∣∣

1
N

N∑

i=1

Wφ,i(r, k)

∣∣∣∣∣

2

, (16)

while all other signals are only seen in the average wavelet power:

P̄(r, k) = ⟨|Wφ(r, k)|2⟩ = 1
N

N∑

i=1

∣∣Wφ,i(r, k)
∣∣2

. (17)

MNRAS 485, 13–29 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/13/5303751 by U
niversity of Idaho Law

 Library user on 24 June 2019



Axisymmetric density waves 19

Figure 4. Wavelet analysis of the structures interior to the Barnard Gap
using data from γ Crucis occultations obtained in 2008–2009. The top panel
shows a representative occultation profile for reference. The second panel
shows the average wavelet power, which contains strong signals near the
various sharp edges, as well as a suggestive diagonal band between 120 260
and 120 290 km. The third panel shows the power of the average phase-
corrected wavelet assuming m = 0 and a pattern speed of 728.28◦ day–1,
which corresponds to the radial epicyclic frequency at the location of the
Prometheus 5:4 resonance (i.e. 120 304 km from Saturn’s centre, marked
by a dotted vertical line). The fourth panel shows the power ratio, which
contains only the signal from the region interior to the Barnard Gap. Note
that the second and third panels use a common set of logarithmically spaced
greyscale levels, while the ratio uses linearly spaced levels between 0 and
1. The bottom panel shows the peak power ratio as a function of radius and
assumed epicyclic frequency (expressed in terms of a shift in the resonant
radius), which shows that the signal is strong only when the pattern speed
is close to the assumed value (marked with a horizontal dotted line).

We also use the ratio of these two powers, R(r, k) = Pφ/P̄, which
ranges between 0 and 1 (Hedman & Nicholson 2016), as a measure
of how much of the signal at a given r and k is consistent with the
assumed m and ω.

3.3 Results

We used the above tools to search for patterns in the region between
the Bessel and Barnard Gaps with values of m between −10 and
10 and, for each m, a range of pattern speeds corresponding to the
expected values of ω within 100 km of the Barnard Gap inner edge
(cf. equation 6). The only strong signal found with this approach

Figure 5. Wavelet analysis of structures interior to the Barnard Gap using
the full set of occultations. See Fig. 4 for detailed descriptions of the panels.
Note that the vertical range of the bottom plot is expanded in this case to
show the signal better. There is no peak interior to 120 275 km outside the
illustrated range.

was obtained with m = 0, corresponding to an axisymmetric wave
with a pattern speed (p = ω equivalent to the local epicyclic rate.
Fig. 4 shows the signal in the γ Crucis occultations obtained in
2008 and 2009. Both the power of the average phase-corrected
wavelet and the power ratio show a clear diagonal band running
from 120 260–120 290 km, consistent with an inward-propagating
density wave launched from somewhere close to the inner edge of
the Barnard Gap. Also, the signal in the power ratio is strongest
when we assume the appropriate pattern speed for an m = 0 wave
launched from that location, providing further evidence that this
region does indeed contain an m = 0 wave (but see the Appendix
for a potential ambiguity between m = 0 density waves and m = 2
bending waves).

Fig. 5 shows the same analysis for the full set of 101 occultations.
For this full data set, the same wave signal can be seen in the
average phase-corrected wavelet between 120 260 and 120 290 km,
although the signal in the power-ratio plot is quite a bit weaker
than for the 2008–2009 γ Crucis occultations (especially interior to
120 275 km, see below). Even so, it is still the case that no other m
value yields a sensible signal for this structure. Moreover, this full
data set removes the ambiguity between m = 0 density waves and
m = 2 bending waves that exists when only the γ Crucis occultations
are considered (see Appendix). Furthermore, the extended data set
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20 M. M. Hedman and P. D. Nicholson

Figure 6. Reconstructed wave profile based on the full set of all occultations
used to make Fig. 5. The top panel shows the mean and range of normal
optical depths among the profiles. The second panel shows the reconstructed
profile of fractional optical depth variations for the m = 0 wave extracted
from the average phase-corrected wavelet assuming a pattern speed of
728.28◦ day–1, corresponding to a resonant radius of 120 304 km (marked by
the dotted line). The third profile shows the radial wavenumber of this wave,
while the fourth and fifth panels show the estimated surface mass density
and opacity derived from this wave (again, assuming a fixed resonant radius
of 120 304 km). The latter two values are consistent with other estimates of
these parameters for comparable regions of the Cassini Division.

yields a much tighter constraint on the wave’s pattern speed, which
for radii between 120 275 and 120 290 km is 728.28 ± 0.02◦ day–1.
This narrow range of pattern speeds implies that the resonance
responsible for generating this wave lies at 120 304 ± 2 km, which
includes the nominal location of the Prometheus 5:4 resonance
at 120 304.0 km and the mean position of the Barnard Gap inner
edge at 120 303.7 km (French et al. 2016a). This location is also
consistent with the observed trends in the pattern’s wavenumber
(that is, k must approach zero at the exact resonance).

In order to verify that this wave-like signal is indeed an ax-
isymmetric density wave, we can take the average phase-corrected
wavelet ⟨Wφ⟩ and apply the inverse wavelet transform to obtain a
reconstructed profile of the m = 0 signal. Note that this profile is
itself complex, but the real and imaginary parts are simply the wave
profiles at times when φλt = 0 and π /2, respectively. Fig. 6 shows
the reconstructed profile derived from the full set of occultation

profiles.4 This profile was computed using only wavenumbers
between 2π /1 and 2π /10 km−1 in order to filter out slow variations
and high-frequency noise. The resulting profile indeed looks like an
inward-propagating density wave, with a wavelength that decreases
steadily with distance from the putative resonance.

To quantify the trends in this feature’s wavelength better, we
compute the phase φr from the real and imaginary parts of the profile
and then take the radial derivative of this quantity to determine the
radial wavenumber of the signal k. This parameter shows a linear
trend, consistent with equation (10) for a density wave in a region of
near-uniform mass density. We can then use this equation, assuming
m = 0 and rL = 120 304 km, to estimate both the surface mass
density σ and the opacity parameter τ n/σ . We find that, over the
region covered by the wave, the surface mass density varies between
1.0 and 1.5 g cm−2. This surface mass density is comparable to
estimates derived from the Prometheus 9:7, Pan 6:5 and Atlas 5:4
waves in the inner Cassini Division, which all fall between 1.1
and 1.4 g cm−2 and occur in regions of comparable optical depth
(Colwell et al. 2009b). These consistent numbers provide further
evidence that this structure is indeed an m = 0 density wave.

Intriguingly, the surface mass density remains nearly constant
despite the optical depth having a clear peak around 120 270 km,
which means the opacity τ n/σ varies substantially across this region.
This behaviour is actually consistent with previous analyses of the
A, B and C rings, which show that the surface mass density is far less
variable than the optical depth (Tiscareno et al. 2013; Hedman &
Nicholson 2014, 2016).

While the wavelength trends associated with this structure are
perfectly consistent with those expected for an m = 0 density
wave, closer inspection of the wavelets and the reconstructed wave
profile in Figs 4–6 reveals some surprising variations in the pattern’s
amplitude and pattern speed. The average wavelet power P̄ for
both the γ Crucis occultations and the full data set shows the
strongest wave signal interior to 120 275 km. By contrast, for both
figures the power of the average phase-corrected wavelet Pφ has a
more uniform strength between 120 260 and 120 290 km. In fact,
for the full data set (Fig. 5), the signal in Pφ is higher around
120 280 km than it is around 120 265 km, which is consistent with
the reconstructed profile (Fig. 6) having a higher amplitude around
120 280 km than around 120 265 km. Finally, the signal in the power
ratio R is strongest between 120 275 and 120 290 km and much
weaker interior to 120 275 km. This trend in R is consistent with
the above trends in P̄ and Pφ and implies that signals exterior
to 120 275 km are more consistent with those expected for an
axisymmetric density wave with the given pattern speed.

The plots of the power ratio versus radius and pattern speed
reveal another important difference between the inner and outer
parts of this wave. In both Figs 4 and 5, the peak signal exterior to
120 275 km occurs at a pattern speed consistent with that expected
for an m = 0 wave launched from the inner edge of the Barnard
Gap. By contrast, interior to 120 275 km, the peak signal seems to
shift to smaller resonant radii (that is, higher pattern speeds). For
the γ Crucis data shown in Fig. 4, the best-fitting pattern speed
for this part of the wave would correspond to a resonant location
20 km interior to the gap edge. Other subsets of the data show a

4Reconstructed profiles generated with subsets of data, like that shown in
Fig. 4, have a generally similar structure. However, the wavelength trends
are noisier, because residual background noise from other structures is not
as cleanly removed in the average phase-corrected wavelet when fewer
occultations are considered.
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Axisymmetric density waves 21

Figure 7. Selected γ Crucis occultation profiles sorted by phase of the
m = 0 pattern (phase increases upwards). Note that the positions of many
peaks shift from left to right as one moves from top to bottom of this plot,
consistent with an m = 0 wave.

similar general trend, but the best-fitting resonant radius varies by
several kilometres. For the full data set, the peak power ratio is
considerably weaker than that found outside 120 275 km and the
best-fitting resonant radius is only 8 km interior to the gap edge.

Together, these trends imply that, while periodic optical depth
variations are more prominent interior to 120 275 km, signals
exterior to 120 275 km are more coherently organized. Examination
of the wave profiles from individual occultations confirms these
findings. Fig. 7 shows occultation profiles derived from the 2008–
2009 γ Crucis occultations sorted by the phase φλt = −ω(t −
t0) for the m = 0 wave with ω = 728.28◦ day–1. The comparable
viewing geometries of these occultations facilitates comparisons
among them. For all these profiles, the most obvious wave-like
signals lie between 120 260 and 120 275 km. By contrast, between
120 275 and 120 290 km the situation is more complicated, because
the peaks are not strictly periodic. These aspects of the individual
profiles primarily reflect the trends in the average wavelet power P̄,
which also indicate a stronger periodic signal interior to 120 275 km.

Assessing how consistent these structures are with an m = 0 wave
is not as straightforward. Since the profiles are sorted by phase, the
positions of optical depth maxima and minima should shift from left
to right as we proceed from the top to the bottom of the plot. The
peaks interior to 120 275 km do generally follow this trend, while the
situation further out is less obvious. In order to clarify this situation,

Figure 8. Selected γ Crucis occultation profiles sorted by phase of the m =
0 pattern (phase increases upwards). The overlaid green curves show the
predicted variations expected to arise from the m = 0 wave based on the
average phase-corrected wavelet and the appropriate phase factors φi (these
predicted variations are scaled by a factor of 2 for clarity). Note that interior
to 120 275 km there are noticeable mismatches between the expected and
observed profiles. Such misalignments are less common at larger radii.

Fig. 8 shows the same occultation profiles together with profiles of
what the predicted m = 0 wave pattern for each observation should
look like based on the average phase-corrected wavelet of these
occultations (these predicted wave signals are superimposed on the
average background ring profile to facilitate comparisons). While
the variations associated with the wave are easier to see interior to
120 275 km, the locations of the individual peaks and troughs in this
region deviate from those expected for the m = 0 wave in several of
the profiles. By contrast, exterior to 120 275 km the peaks are less
obvious, but their positions are generally much better aligned with
those expected for the m = 0 wave. These comparisons therefore
support the notion that, while the wave amplitude is higher in the
inner part of the wave, the outer part of the wave has a more coherent
m = 0 pattern.

Other subsets of the occultation data show similar differences
between the inner and outer parts of this wave and provide evidence
for longer-term changes in the wave’s structure. Fig. 9 shows profiles
obtained between 2012 and 2014. Note that these occultations
have more heterogeneous viewing geometries, which makes the
signal-to-noise ratio of the density variations more variable. Despite
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22 M. M. Hedman and P. D. Nicholson

Figure 9. Occultation profiles from 2012–2014 sorted by phase of the
m = 0 pattern (phase increases upwards). Note that the locations of the
prominent density variations around 120 265 km are shifted slightly inwards
relative to those shown in Fig. 7.

this, the radial extent of the strong wave pattern around 120 265 km
in these profiles appears to differ systematically from that found
in Fig. 7. In the earlier γ Crucis occultations, the strong peaks
are found in a region between 120 262 and 120 272 km, with peaks
rarely being seen interior to 120 260 km. However, for the data
obtained between 2012 and 2014, the strong peaks are often found
around 120 260 km and now are rarely found exterior to 120 270 km.
This packet of waves therefore appears to have shifted roughly 2 km
inwards during the 4 years between these observations.

The observed inward shift of this wave packet is consistent with
the expected inward group velocity for this density wave. Assuming
a surface mass density of around 1.2 g cm−2, equation (11) yields a
group velocity of roughly 0.5 km year−1, which would be consistent
with a shift of around 2 km in the four years between the two groups
of observations. We may therefore posit that the amplitude of the
perturbation driving the wave changed over time and a packet of
high-amplitude waves created sometime in the past (ending around
70 years ago) has propagated inwards over the course of the Cassini
mission.

Time variations in how this wave is excited could also help explain
why the wave becomes less well organized further away from the
nominal resonance. If not only the perturbation’s amplitude, but
also its frequency changes over time, then this wave could have
some similarities with the waves excited by resonances with the

satellite Janus, the orbit period of which changes periodically due to
interactions with its co-orbital companion Epimetheus (Yoder et al.
1983). The waves generated by Janus exhibit unusual variations in
their pattern speeds that likely arise because parts of the wave have
partially decoupled from the satellite perturbations (Porco et al.
2005; Tiscareno et al. 2006; Hedman & Nicholson 2016) and a
similar phenomenon could be operating here. In principle, these
variations in the wave’s pattern speed could impact the estimates
of the ring’s surface mass density and opacity shown in Fig. 6.
However, since there is not yet a complete theory for how waves
with variable pattern speeds propagate in shearing discs, there are
not yet any quantitative estimates for how large these effects may
be. Developing such a theory is well beyond the scope of this
article, but we can explore this idea further by considering how this
axisymmetric wave could be excited in the first place.

4 EX C I TAT I O N O F A X I S Y M M E T R I C D E N S I T Y
WAVES FRO M R ESONANTLY CONFINED
E D G E S

The above observations provide reasonably firm evidence that an
axisymmetric m = 0 wave is being launched from the inner edge
of the Barnard Gap. Hence there must be a perturbation that is
independent of longitude but oscillates in time at a frequency
equal to the radial epicyclic frequency of the particles within two
kilometres of the gap edge. In principle, such a perturbation could
arise from collisions or the gravitational potential, but for the sake
of simplicity we will assume here that it is due to a term in the
gravitational potential that can be written as

U0 = C0e±iκLt , (18)

where κL is the radial epicyclic frequency at the gap edge and C0 is
a constant that determines the strength of this wave.

The fact that the wave is launched from an edge that is perturbed
by the 5:4 resonance with the satellite Prometheus strongly suggests
that perturbations from that satellite play a role in generating this
wave. We may designate the term in the potential associated with
this resonance as

UP = CPei5(λ−nPt) = CPei(5λ−(5nL−κL)t), (19)

where nP is the mean motion of Prometheus and the last equality
uses the definition of the resonant mean motion nL and radial
epicyclic frequency κL (see equation 6). The constant CP quantifies
the strength of the perturbation from this moon.

Of course, the perturbation from Prometheus does not have the
same form as U0, but French et al. (2016a) determined that the inner
edge of the Barnard Gap also exhibits a diverse array of normal
modes (see Table 2). Each of these normal modes has an azimuthal
wavenumber m and a pattern speed (p = nL − κL/m. The only
detectable normal modes have pattern speeds slower than the local
orbital rate (i.e. positive values of m). While we do not yet have a
complete understanding of what determines the relative amplitudes
of these normal modes, it is likely that the observable variations
in the edge position correspond to cavity modes trapped between
the edge and a nearby location within the ring where the resonant
condition is exactly satisfied. For material close to the gap edge,
the variations in edge position should generate terms in the local
gravitational potential that have m-fold symmetry and rotate at the
corresponding pattern speed:

Um = Cmei(mλ−(mnL−κL)t). (20)

MNRAS 485, 13–29 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/1/13/5303751 by U
niversity of Idaho Law

 Library user on 24 June 2019



Axisymmetric density waves 23

Table 2. Modes observed on the inner edge of the
Barnard Gap (French et al. 2016a).

Mode Amplitude (km) Phase at epoch (deg)a

1 0.44 ± 0.06 200.07 ± 8.92
2b 0.61 ± 0.07 44.12 ± 3.25
3 1.31 ± 0.06 108.47 ± 1.02
4 1.64 ± 0.07 46.00 ± 0.57
5 1.36 ± 0.06 27.61 ± 0.56c

6 0.59 ± 0.07 24.56 ± 0.57
7 0.55 ± 0.06 46.93 ± 0.95
8 0.30 ± 0.07 10.41 ± 1.59
9 0.71 ± 0.07 8.38 ± 0.55
10 0.42 ± 0.06 1.75 ± 0.98
13 0.36 ± 0.06 26.84 ± 0.86

Notes:
a Epoch is UTC 2008-001T12:00:00
b Free m = 2 mode; note that the m = 2 mode driven by
the Mimas 2 :1 resonance has an amplitude that is about
three times smaller.
c Phase determined from the data; the expected phase of
the m = 5 resonance with Prometheus is 23◦.

Note that each of these modes could potentially produce both
azimuthal variations in the local gravitational field or perturb the
motions of particles via interparticle collisions. Since the latter
comprise a dissipative process, it is not strictly appropriate to
represent this force in terms of a potential. Future studies should
examine this more carefully, but for the sake of simplicity we will
assume here that the perturbation associated with each edge mode
can be written in the above form.

It is important to note that French et al. (2016a) found no evidence
for an m = 0 mode in the position of the Barnard Gap’s inner
edge. This is probably because such a mode, like outer Lindblad
resonances, produces disturbances that propagate inwards from the
edge and so cannot become a self-excited cavity mode trapped
close to the edge. Instead, we posit that the m = 0 wave is
generated through a non-linear mixing of the above terms in the local
gravitational potential. A detailed model of how this mixing could
occur is beyond the scope of this article and so instead we simply
demonstrate that appropriate mixtures of UP and two different Um

can produce the desired source term for the m = 0 wave.
Since each normal mode on the edge has a different prescribed

dependence on longitude, there is no way to mix UP with a single
Um to produce a term that is independent of λ like U0. However, if
we consider a process that mixes UP with two Um terms, we can get
terms that look like

FUPU∗
mU∗

m′ = FCPC
∗
mC∗

m′ ei(5−m−m′)(λ−nLt)−iκLt , (21)

where asterisks denote complex conjugates and F is a factor that
describes the efficiency of the interference. This expression will
have the desired form so long as we choose m + m

′ = 5. Similar
terms can be obtained from combinations like UPU∗

mUm′ , UPUmU∗
m′ ,

etc.,5 which would yield suitable terms if m = 5 + m
′
or m

′ = 5 +
m. However, since the strongest normal modes observed on the edge
have m < 5 (see Table 2), we will focus on the first option here. Note
that there are two different mode combinations that can produce the

5All these terms are possible because the physical potential (i.e. the real part
of U) contains products of terms that vary like sin [mλ − (mnL − κL)t] and
the expansion of these products into sum and difference frequencies yields
terms equivalent to the real parts of all these terms.

desired mixture, one with m = 1 and m
′ = 4 and another with m = 2

and m
′ = 3. Both of these pairs include one of the highest amplitude

modes (>1 km in Table 2) and another mode with amplitude around
0.5 km.

Of course, without an actual theory for how these perturbations
actually interact with each other, we cannot make quantitative
predictions for the amplitude or the phase of this perturbation to
see if they are sufficient to produce the observed wave. However,
we can at least determine what the amplitude of these perturbations
would need to be in order to be consistent with the observed wave
signature.

The fractional optical depth variations associated with the ax-
isymmetric wave are around 50 per cent (see Figs 1 and 6), which is
comparable to the variations seen in nearby density waves generated
by Pan. This implies that the ratio U0/UP should be of the order of the
mass ratio between Pan and Prometheus, which is about 3 per cent
(Porco et al. 2007; Jacobson et al. 2008). Hence we can conclude
that, in order for the edge modes to produce the observed waves,
|FU∗

mU∗
m′ | ∼ 0.03. This is not many orders of magnitude less than

one and so implies that the mixing between the modes needs to be
fairly strong.

Even if the mixing between the relevant modes is reasonably
strong, the axisymmetric terms arising from different combinations
of terms could potentially interfere with each other. Fortunately,
we can estimate the relative phases of the axisymmetric terms by
re-writing them in the following form:

FUPU∗
mU∗

m′ = FCPC
∗
mC∗

m′ e−i(5λP−mλm−m′λm′ ), (22)

where λP is the longitude of Prometheus, while λm and λm′ are
longitudes that track the two normal modes. Since λP corresponds
to a minimum in the radial position of the Barnard Gap edge, λm and
λm′ should also correspond to minima of their corresponding edge
modes. These numbers correspond to the phase parameters provided
in Table 2 from French et al. (2016a). Hence 5λP − mλm − m′λm′

is the analogue of mλsat for standard Lindblad resonances. Using
the phases given in Table 2, we find that for the m = 2/m

′ = 3
mode combination this phase is 61◦–84◦, while for the m = 1/m

′ =
4 mode combination it is 90◦–113◦ (the lower numbers use the
actual numbers for Prometheus’ longitude, while the higher ones
use the observed location of the m = 5 edge mode at the epoch).
These phase parameters are very close to each other, indicating that
these two perturbations are nearly in phase with each other. Thus,
these two different mode combinations could reinforce each other,
supporting the formation of an m = 0 wave.

Finally, we note that this basic scenario can potentially accommo-
date the unusual trends in the wave’s amplitude and coherence. Note
that the m = 5 structure on the Barnard Gap edge is not perfectly
aligned with Prometheus (the phase of the pattern at epoch is about
5◦ away from its expected orientation relative to the moon). Similar
offsets have been observed in the m = 2 structure in the B ring’s
outer edge, which occur because there are actually two separate
m = 2 patterns on this edge, a ‘forced’ pattern that tracks Mimas
and a ‘free’ pattern moving at a slightly different pattern speed
(Spitale & Porco 2009; Nicholson et al. 2014a). Together, these two
patterns produce a combined m = 2 edge structure, the amplitude
and orientation of which relative to Mimas vary slowly over time.
A similar phenomenon could potentially occur on the Barnard Gap
inner edge, causing the amplitude and phase of the m = 5 term
to vary and thus producing variations in the wave amplitude that
propagate inwards. Looking at the reconstructed wave profile in
Fig. 6, we can posit that the peaks in amplitude around 120 280 km
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and 120 265 km could represent parts of the waves generated during
times when the m = 5 edge mode was particularly high. Assuming
a group velocity of the order of 0.5 km year−1, this would imply
that the m = 5 pattern’s amplitude varies with a period of the order
of 30 years. This period is significantly longer than the full span
of the Cassini mission and so variations in edge shape might have
eluded detection thus far. Further study will therefore be needed to
determine whether the wave’s detailed structure is consistent with
the recent history of the gap edge.

5 C A N D I DAT E S F O R A D D I T I O NA L
AXISY MMETRIC DENSITY WAVES

If axisymmetric density waves can be generated by combinations of
normal modes on resonantly confined ring edges, then other edges
confined by resonances could potentially produce axisymmetric
waves. In Section 5.1 below we discuss additional candidate
axisymmetric waves in Saturn’s rings, while in Section 5.2 we
briefly discuss possible analogues in the Uranian rings.

5.1 Other axisymmetric waves in Saturn’s rings

A wavelet-based survey of the entire ring system failed to reveal any
additional signals consistent with m = 0 density waves that were as
strong as the signal from the region interior to the Barnard Gap. This
is not necessarily so surprising if such waves are indeed generated
by mode mixing near edges, since most edges do not show the
rich spectrum of modes seen on the inner edge of the Barnard Gap
(Nicholson et al. 2014a,b; French et al. 2016a). Instead, most inner
edges of gaps are dominated by a single mode (usually m = 1),
which would probably not be ideal for generating the axisymmetric
perturbations needed to produce a detectable wave. Even so, one
might hope to see such waves generated at other resonantly confined
outer ring or inner gap edges, which are the closest analogues to the
Barnard Gap. The other four edges in Saturn’s rings that are clearly
associated with satellite resonances are as follows.

(i) The outer edge of the A ring, which is close to the 7:6 reso-
nance with the co-orbital moons Janus and Epimetheus (Spitale &
Porco 2009; El Moutamid et al. 2016).

(ii) The inner edge of the Keeler Gap in the outer A ring, which
is influenced by the 32:31 resonance with Prometheus (Tajeddine
et al. 2017b).

(iii) The outer edge of the B ring, which is held in place by the
2:1 resonance with Mimas (Spitale & Porco 2010; Nicholson et al.
2014a).

(iv) The outer edge of the Dawes ringlet in the C ring, which is
held in place by the 3:1 resonance with Mimas (Nicholson et al.
2014b).

Note that, while other features are located close to strong satellite
resonances – like the Laplace Ringlet in the Cassini Division or the
Bond and Colombo Ringlets in the C ring, for these features the
relevant resonances are located close to the centre of the ringlet and
so perturb the internal structure or global shape of the ringlet, rather
than the position of one of its edges. We will not consider those
features further here.

Section 5.1.1 below briefly considers the edges of the A ring and
the Keeler gap, neither of which seem to produce an axisymmetric
density wave. However, as mentioned in the Introduction, both the
Dawes ringlet and the outer B ring possess structures that could
represent axisymmetric density waves. Section 5.1.2 examines the
occultation data in more detail; these provide evidence that these

Figure 10. A few representative optical depth profiles of the A ring outer
edge derived from stellar occultations obtained by the VIMS instrument on
board the Cassini spacecraft.

Figure 11. A few representative optical depth profiles of the Keeler
Gap inner edge derived from stellar occultations obtained by the VIMS
instrument on board the Cassini spacecraft.

patterns are distorted by long-wavelength m = 1 perturbations
that complicate their interpretation. Section 5.1.3 then discusses
evidence from selected imaging sequences showing that the struc-
tures in the outer B ring do have some properties consistent with
axisymmetric density waves.

5.1.1 No evidence for axisymmetric waves associated with edges
in the A ring

Figs 10 and 11 show representative profiles of the Keeler Gap
and A-ring edges. While there are a small number of peaks
near both of these edges, these can reasonably be attributed
to outward-propagating density waves generated by the Pandora
19:18/Prometheus 35:34 or Pandora 18:17 resonances, respectively.
Hence there is no evidence for axisymmetric density waves associ-
ated with either of these edges.
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Axisymmetric waves may not exist on these particular edges,
because their dynamical environments are somewhat different from
that of the Barnard Gap edge. While the Keeler Gap is clearly
perturbed by a resonance with Prometheus (Tajeddine et al. 2017b),
this edge also falls close to the orbit of the much smaller moon
Daphnis and that moon may prevent the edge from developing a
complex spectrum of normal modes. On the other hand, the outer
edge of the A ring is perturbed by the co-orbital moons Janus and
Epimetheus, the periodic orbital changes of which clearly influence
the shape of the edge over the course of a few years (Spitale &
Porco 2009; El Moutamid et al. 2016). A tesseral resonance with
the planet may complicate this situation further (El Moutamid et al.
2016). This edge’s structure is therefore more time-dependent than
the other edges considered here, which could inhibit the formation
of additional edge modes and axisymmetric waves.

5.1.2 Occultation profiles of the candidate axisymmetric waves in
the Dawes ringlet and the outer B ring

As mentioned in the Introduction, the Dawes ringlet does contain
a series of peaks and dips that extend on either side of the Pandora
2:1 resonance, which is inconsistent with a wave launched from
that resonance and so could be due to a wave propagating inwards
from the gap edge (see Fig. 2). Also, the complex structure of the
B ring does include some periodic optical depth variations around
117 300 km that could represent parts of a similar wave (see Fig. 3).
Furthermore, if axisymmetric waves are generated by interference
among resonant perturbations and edge normal modes, then the
Dawes ringlet and outer B ring are the most promising places to
find additional examples of these waves. Both edges exhibit normal
modes with amplitudes that are not much smaller than the m = 2
patterns generated by the relevant satellite resonances (Nicholson
et al. 2014a,b).

Applying the above wavelet-based analyses to the Dawes ringlet
and outer B ring failed to reveal any clear m = 0 patterns in these
regions. Closer inspection of the relevant patterns, however, reveals
that the structure of both of these regions is probably much more
heavily distorted by m = 1 disturbances than the region near the
Barnard Gap. Figs 12–14 show multiple profiles of the Dawes ringlet
and the outer B ring sorted by the phase of an m = 1 pattern generated
near the relevant edge (i.e. λ − ϖ̇ (t − t0)). In Fig. 12, the profiles of
the Dawes ringlet clearly indicate that both the shape and spacing
of the periodic opacity peaks vary systematically from profile to
profile. For the outer B ring, the situation is a bit more complicated.
Fig. 13 shows profiles derived from occultations of the star γ Crucis
obtained in 2008–2009. Here, there are systematic trends in the
locations where small-scale periodic optical depth variations occur
(e.g. the cluster of peaks around 117 200 km), but variations in
wavelength are harder to discern. However, in later observations
(shown in Fig. 14), the periodic patterns are more prominent and
show variations in shape and spacing similar to those seen in the
Dawes ringlet.

It is important to note that, while the shape and spacing of the
periodic optical depth variations are modulated by something with
m = 1, this does not mean that the periodic structures are themselves
m = 1 spiral patterns. Recall that m = 1 waves propagate outwards,
so such waves would need to be generated interior to the relevant
edges and there are no known m = 1 resonances that could excite
waves in these regions. Instead, these periodic structures probably
have another m number and are distorted by the m = 1 normal modes
associated with the nearby edge. Indeed, m = 1 edge modes are

Figure 12. Plot showing a collection of profiles of the Dawes ringlet derived
from occultations of the star γ Crucis obtained in 2008 and 2009. The
profiles are sorted by an m = 1 phase computed using the indicated pattern
speed. Note that both the shape and the spacing of the periodic structure
vary systematically from profile to profile.

expected to penetrate much further into the ring than other normal
modes,6 so it is not unreasonable that the observed distortions are
mostly m = 1 (Spitale & Porco 2010; Nicholson et al. 2014a).
Also, the m = 1 normal modes on the outer edges of the Dawes
ringlet and the B ring are over an order of magnitude larger than that
found on the inner edge of the Barnard Gap, being 6.10 ± 0.12 km
and 20.44 ± 0.99 km, respectively (Nicholson et al. 2014a,b), as
opposed to 0.44 ± 0.06 km (French et al. 2016a). This would
naturally explain why these distortions did not interfere with our
wavelet analysis of the latter region.

In principle, the distortions in the pattern’s wavelength induced
by the m = 1 edge modes could be corrected for and removed
using techniques such as normalizing the radius scale (Graps et al.
1995; French et al. 2016b). However, thus far we have not had
any success in using these techniques to obtain a signal that can be
clearly identified with wavelet tools like those discussed above. This
is probably because the m = 1 distortion is not simply a uniform
telescoping of the entire region, but is instead a more complex
distortion involving gradients in both the eccentricity and pericentre
position. For example, if we examine the Dawes ringlet profiles in

6This is for the same reason that the radial wavelengths of m = 1 density
waves are much larger than those with other values of m.
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26 M. M. Hedman and P. D. Nicholson

Figure 13. Plot showing a collection of profiles of the outer B ring derived
from occultations of the star γ Crucis obtained in 2008 and 2009. The profiles
are sorted in order of an m = 1 phase computed using the indicated pattern
speed. Note that the locations and extent of regions containing fine-scale
structure vary systematically among these profiles.

Fig. 12, we can see that the wavelength of the periodic structures
around 90 150 km reaches its maximum value when the pattern’s
wavelength around 90 170 km is near its minimum value. Thus we
cannot use the same sorts of wavelet analyses performed above
to ascertain whether these patterns are truly due to m = 0 waves
launched from the relevant edges.

Rather than try to correct for these distortions, we could instead
select observations made at nearly the same phase of the m =
1 distortion. This strategy greatly reduces the number of possible
comparisons among occultations and unfortunately has not yet been
productive for occultation data. However, circumstantial evidence
for an axisymmetric density wave in the outer part of the B ring can
be obtained from imaging data.

5.1.3 Evidence for an axisymmetric wave in the outer B-ring from
images

For the occultations shown in Fig. 14, the wavelength of the
pattern around 117 250 km is 10–30 km, which is large enough to
be resolved in images obtained by the Narrow Angle Camera on
board the Cassini spacecraft (Porco et al. 2004). This instrument
made several observations where it stared at a fixed longitude in

Figure 14. Plot showing a collection of profiles of the outer B ring derived
from occultations of the star α Scorpii in 2016. The profiles are sorted in
order of an m = 1 phase computed using the indicated pattern speed. Note
that the shapes and spacing of the peaks vary systematically among these
profiles.

the outer part of the B ring over the course of an orbital period
(roughly 12 hours) and watched material rotate through the field
of view. These particular observations are especially useful for this
investigation, because all the images were taken at the same inertial
longitude. Since the apsidal precession rates in this part of the ring
are only about 5◦ day−1, this means they were all taken at basically
the same phase of any m = 1 structure. By contrast, the pattern speed
for any other m value is comparable to the orbital mean motion and
so changes associated with the changing phases of other patterns
should be visible in these data.

A thorough investigation of all the relevant imaging data is
beyond the scope of this work, but we conducted a preliminary
study of one observation sequence called BMOVIE from Rev
206, which consisted of 100 images (filenames N1784298322-
N1784343322) of the unlit side of the outer B ring obtained on
day 198 of 2014. We navigated these images with the appropriate
SPICE kernels and adjusted estimates of the pointing so that the
outer edge of the Jeffreys Gap in the Cassini Division was at the
expected position in all images. We then averaged the brightness
over longitude to generate a radial brightness profile from each
image. Fig. 15 shows a mosaic of these brightness profiles that
gives the brightness of the ring as a function of radius and time at
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Axisymmetric density waves 27

Figure 15. Image showing the brightness of the outer part of Saturn’s
B ring as a function of radius and time at one inertial longitude, derived
from a series of Cassini images obtained on day 198 of 2014 (i.e. near a
maximum in the m = 2 amplitude). Note the bright and dark bands between
117 200 and 117 400 km. The phase speed of this pattern is consistent with an
m = 0 wave launched from the outer edge of the B ring.

the observed inertial longitude. Note that the total time span of the
observation corresponds to approximately one local orbital period.

The most dramatic feature in this image is the variation in the
location of the outer edge between 117 470 and 117 630 km, which
is dominated by perturbations driven by the Mimas 2:1 resonance.
This is an m = 2 pattern moving around the planet at around half the
local orbital speed, so we only see a single maximum and minimum
in the radial position over the course of the observation.

For the purposes of this analysis, however, the more interest-
ing structures are the alternating bright and dark bands between
117 220 and 117 400 km. These bands are in the same place as the
periodic opacity variations seen in the occultation data in Fig. 14
and so are almost certainly the same structure. With the imaging
data, we can clearly trace brightness maxima and minima over time
and, while the bands seem to drift inwards and outwards at different
times, the overall trend is for the bands to move outwards over time.
This generally outwards motion of brightness maxima and minima
is consistent with the expected behaviour of crests and troughs of
a density wave (recall from Section 2 that density waves always
have a positive (outwards) phase velocity). The variations around
this main trend, by contrast, are likely due to distortions in the ring
associated with the various edge modes. Indeed, the wiggles in the
positions of these dark bands seem to track the m = 2 variations in
the position of the edge.

If these periodic bands are in fact a density wave, we can use
these data to constrain the value of m for this pattern. Recall that the
frequency ω of such a wave can be written as a function of the pattern
speed or the resonant mean motion and epicyclic frequencies, so that
the phase of the pattern φr + φλt can be written as (cf. equations
5–7)

φ ≃ φr (r) + |m|λ − |m − 1|nLt. (23)

This means that, at a given radius and longitude, the phase should
go through |m − 1| cycles in one orbital period or, equivalently, |m
− 1| bright or dark bands should cross each radius in an orbit period.
For the pattern in Fig. 15, if we neglect the distortions associated
with the edge modes, then we find that only a single bright or dark
band crosses each radius in an orbit period. This means that |m −
1| = 1, which means that m should be either 0 or 2. At first, m =
2 seems like a more logical choice, given the strong m = 2 inner
Lindblad resonance near the edge, but an m = 2 structure would
propagate outwards, leading to smaller wavelengths closer to the
edge, which is not the case. Also, an m = 2 resonant cavity mode
should not extend this far inwards from the edge (Spitale & Porco
2010; Nicholson et al. 2014a). Instead, the wavelength seems to
decrease inwards, which is more consistent with an m = 0 outer-
Lindblad-resonance-like wave launched from the edge itself.7

Again, further work will be needed to understand this structure in
the outer B ring completely, but imaging data do provide evidence
that an axisymmetric density wave is likely part of the structure in
the outer B ring. Unfortunately, there are no movies with sufficient
resolution of the Dawes ringlet to provide evidence that the periodic
structures here are also an inward-propagating axisymmetric wave,
but analogies with both the Barnard Gap and the B ring make
this likely. Also note that both the Dawes ringlet and B-ring edges
show strong m = 1, 2 and 3 normal modes, in addition to the
resonantly excited m = 2 modes (Nicholson et al. 2014a,b), which
could generate the m = 0 wave through the same basic mechanism
as described above for the Barnard Gap (in this case having the m =
2 pattern generated by Mimas mix with normal modes with m = 1
and 3).

5.2 Axisymmetric structures in the Uranian rings

Additional axisymmetric structures might also be found in the
narrow dense rings of Uranus. Of course, the available data on these
rings are much more limited, but there are at least four potential
examples of resonantly confined edges in Uranus’s rings (Porco &
Goldreich 1987; French et al. 1991):

(i) the outer edge of the ε ring is close to the 14:13 inner Lindblad
resonance with Ophelia;

(ii) the inner edge of the ε ring is close to the 24:25 outer Lindblad
resonance with Cordelia;

(iii) the outer edge of the δ ring is close to the 23:22 inner
Lindblad resonance with Cordelia;

(iv) the inner edge of the γ ring is close to the 6:5 inner Lindblad
resonance with Ophelia.

The η ring is also perturbed by the 3:2 inner Lindblad resonance
with Cressida (Chancia, Hedman & French 2017), but this resonance
is sufficiently distant from the ring that it affects the overall shape
of the ring, rather than a specific edge.

7Recall that, for density waves with m < 1, the phase and group velocities
are in opposite directions.
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Since axisymmetric density waves propagate inwards, the most
likely places these waves would arise is from the outer edges of
the ε and δ rings. Interestingly, inward-propagating density waves
have been identified in both of these rings (Horn et al. 1988;
Yanamandra-Fisher 1992). These waves were previously suggested
to be generated by resonances with interior satellites, but the
possibility that they are due to an axisymmetric wave generated
by edge modes is worth exploring. One potential argument against
such an interpretation is that the short wavelengths of these patterns
suggest that each must represent a wave with a large |m| (Horn et al.
1988; Yanamandra-Fisher 1992).

Of course, the most famous axisymmetric structure in the Uranian
rings is the m = 0 ‘breathing mode’ in the mean position of
the γ ring. Strangely, the nearest satellite resonance appears to
be closer to the inner edge of this ring than its outer edge, so
it may not be a perfect analogue to the waves seen in Saturn’s
rings. However, there is evidence that the width of this ring has
m = 4 and m = 6 patterns (Showalter 2011) and it could be that these
represent suitable analogues of edge modes for this narrow ring. It
may even be that this ring is so narrow that some modes primarily
affect the width of the ring, while others like the m = 0 and m = 1
primarily affect its mean radius (Longaretti 1989). Understanding
how these modes could mix and interfere in this context could be
a useful test for any model developed to explain the axisymmetric
density waves in Saturn’s rings.

6 SU M M A RY

The basic results of our investigation are as follows.

(i) An inward-propagating axisymmetric density wave is being
launched from the inner edge of the Barnard Gap in the Cassini
Division.

(ii) This wave could be generated by interference between
perturbations from the 5:4 resonance with Prometheus and normal
modes on the gap edge.

(iii) Another example of an axisymmetric density wave probably
exists in the outer B ring, being launched from that ring’s outer edge
near the Mimas 2:1 Lindblad resonance.

(iv) A third example may be present in the Dawes ringlet in the
C ring.

(v) Additional examples may be present in the γ , δ and/or ε

Uranian rings.

Future studies will be needed to develop a proper physical model
of the mode mixing that could generate axisymmetric waves, to
confirm or deny the existence of the other possible waves associated
with resonantly confined edges and to determine whether these
waves play any significant role in angular momentum and energy
transport near these edges (Tajeddine et al. 2017a)
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APPENDIX: A POTENTIAL AMBIGUITY IN WAVE
IDENTIFICATIONS

While the 2008–2009 γ Crucis occultation data shown in Fig. 4
are consistent with an m = 0 density wave, for these particular
occultations we cannot rule out the possibility that this is an m = 2
bending wave.

Recall that the expected phase shifts for an m = 0 density wave
are φi(m = 0) = −κL(ti − t0). The analogous expression for an
m = 2 bending wave is φi,v (m = 2) = 2λi − (2nL − νL)(ti − t0),
where νL is the vertical epicyclic frequency. Expressed in terms
of the apsidal precession rate and the nodal regression rate, these
expressions become

φi(m = 0) = −(nL − ϖ̇L)(ti − t0) (A1)

and

φi,v(m = 2) = 2λ − (nL + (̇L)(ti − t0). (A2)

For all parts of Saturn’s rings (̇L = −ϖ̇L, and so the time-
dependent parts of these two phases are nearly identical. This means

that a set of occultations obtained at a single longitude λ cannot
distinguish between these two different types of wave, because
the predicted phase shifts differ by an additive constant 2λ that
does not contribute to the wavelet power levels. (In general, similar
ambiguities can arise between spiral density waves with |m| arms
and bending waves with |m + 2| arms.)

Fortunately, we can resolve this ambiguity and confirm our
identification of this wave by considering the full set of occul-
tations, which cut this region at different longitudes as well as
different times (they also have a range of opening angles, which
also influence the inferred phase of any potential bending wave).
This extended data set yields no signal for the m = 2 vertical
wave option, but is consistent with an m = 0 density wave (see
Fig. 5).
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