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A B S T R A C T

We determine the time-variable shape of the outer edge of Saturn’s B ring using the complete set of Cassini
radio and stellar occultation data obtained between mid-2005 and the End-of-Mission in late 2017, considerably
expanding the range and number of individual ring edge measurements used in previous analyses (Spitale and
Porco, 2010; Nicholson et al., 2014a). During this 12-year interval, the dominant 𝑚 = 2 pattern driven by the
Mimas 2:1 inner Lindblad resonance completed just over two rotations relative to Mimas, with a circulation
period of 5.362 yr, while its radial amplitude varied from a minimum of 4 km to a maximum of 71 km.
This circulation pattern has remained essentially unchanged over the full period of the observations. We
confirm the existence of four additional perturbations with azimuthal wavenumbers 𝑚=1, 3, 4 and 5 and
mean amplitudes ranging from 5 to 24 km, which we interpret as normal or edge modes, possibly triggered
by viscous overstabilities in the dense B ring (Borderies et al., 1985; Longaretti, 2018). Fits of a simple WKB
model to the observed pattern speeds of the edge modes with 𝑚 ≠ 1 suggest an average surface mass density
in the outer 30 km of the B ring of ∼100 g cm−2, somewhat greater than the 50–70 g cm−2 inferred from
density and bending waves in most other regions of this ring (Hedman and Nicholson, 2016). The 𝑚 = 1 mode,
which extends further into the B ring, yields a more typical value of 60 g cm−2. Surprisingly, all four of these
modes exhibit significant librations in their amplitudes and phases, with periods between 2.3 and 8.6 yr and
amplitudes of 1.6 to 7.4 km. The origin of these librations is unknown and it is unclear if they are truly periodic
and will maintain their amplitudes, periods, and phases over timescales of centuries. Their frequencies do not
match those expected for interference between edge modes with varying numbers of radial nodes. Instead, they
may represent periodic oscillations in the amplitudes of individual normal modes or nonlinear, non-resonant
coupling between normal modes with different values of 𝑚, leading to long-term quasi-periodic variations in
the mode amplitudes.
1. Introduction

The outer edge of Saturn’s B ring – which is also the inner edge of
the Cassini Division – coincides with the strongest satellite resonance
in the rings: the 2:1 inner Lindblad resonance with Mimas (Tiscareno
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and Harris, 2018). Although the likely connection between satellite
resonances and the location of the Cassini Division was recognized
in the 19th century (Kirkwood, 1866), if not earlier, the modern
understanding of this phenomenon is due to Goldreich and Tremaine
(1978), who pointed out that the torque exerted by Mimas on the ring
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at this resonance is probably large enough to counteract the outward
transport of angular momentum through the B ring due to viscous
interactions between the ring particles. As a result, the ring material
is prevented from spreading radially beyond the resonance, and the
edge of the B ring is effectively held in balance. A consequence of
this picture is that Mimas should force significant perturbations on the
orbits of ring particles near the resonance, resulting in a 2-lobed radial
pattern that is expected to rotate at the same angular velocity as the
satellite, or approximately one-half of the local Keplerian rate. Such a
perturbation was in fact observed in Voyager observations of the rings
in 1980/81 (Porco et al., 1984), where it was found to agree fairly
well with theoretical expectations: at that time, the observed radial
amplitude of the ring edge was ∼75 km and one of the two radial
minima was found to be aligned with Mimas to within a few degrees.
The torque itself, like the tidal torque exerted on the Earth’s rotation
by the Moon, arises from the interaction between this radial distortion
of the ring streamlines and the gravitational potential of Mimas, and
thus scales as the square of Mimas’s mass. It is also proportional to
the small phase lag in the ring’s response relative to Mimas. For a
recent discussion of the dynamics involved, as well as several as-yet-
unanswered questions about this process, the reader is directed to the
review by Longaretti (2018).

A similar situation occurs in the A ring, where another strong
resonance appears to confine the outer edge of this ring against a
similar tendency to spread radially. A revised calculation of the overall
torque balance for both the A and B rings, taking into account the
effects of additional satellite resonances, was made by Tajeddine et al.
(2017), leading to updated estimates of the radial viscosity profiles
across both rings.

With the advent of data from the Cassini spacecraft, it became
possible to revisit the question of the shapes of the outer edges of the
A and B rings, and to characterize them with much greater fidelity
than was possible with the more limited Voyager observations. This
problem was tackled using azimuthal mosaics of images acquired with
Cassini’s Imaging Science Subsystem (ISS) during the initial years of the
mission and by combining data from several dozen radio and stellar
occultations observed by the Radio Science Subsystem (RSS) and the
Visual and Infrared Imaging Spectrometer (VIMS). Spitale and Porco
(2009) used ISS data to study the shape of the A ring’s outer edge, while
that of the B ring was analyzed by Spitale and Porco (2010), based on
data taken between 2005 and 2009. Hedman et al. (2010) investigated
the kinematics of the B ring edge using VIMS occultations between
2005 and 2008, while (French et al., 2010) carried out a similar study
using a smaller set of RSS occultations from 2005.

As a result of these investigations, it was established that the shape
of the B ring’s edge, in particular, is remarkably complex. There are
not one but two 2-lobed patterns, with similar radial amplitudes of
approximately 35 km but rotating at slightly different angular rates.
The slower of the two modes is that forced by Mimas, while the faster
is a free normal mode (defined more precisely below). The result is that
the two patterns beat against one another, alternately adding construc-
tively and then almost canceling each other out (Hedman et al., 2010).
Fits to a somewhat longer span of Cassini occultation data showed
that the beat period is 5.42 yrs, with the overall 𝑚 = 2 amplitude
reaching a maximum of 71 km and a minimum of 3 km (Nicholson
et al., 2014a). During this cycle, the 𝑚 = 2 pattern was actually found
to rotate through 360◦ relative to Mimas, instead of remaining aligned
with the satellite as had been predicted (Spitale and Porco, 2010).
Radial minima are anti-aligned with Mimas at the times of minimum
amplitude, which occurred during the Cassini mission in 2006.80,
2012.24 and 2017.69. In addition to this circulating 𝑚 = 2 pattern,
there is a slowly-rotating 𝑚 = 1 perturbation (equivalent to a precessing
Keplerian ellipse) with an amplitude of ∼20 km and a rapidly-rotating
𝑚 = 3 pattern with an amplitude of ∼10 km. Evidence was later found
for smaller-amplitude patterns with 𝑚 = 4 and 𝑚 = 5 (Nicholson et al.,
2

2014a). These non-resonant perturbations with 𝑚 = 1, 3, 4 and 5, as
well as the free mode with 𝑚 = 2, are thought to represent normal
modes trapped in resonant cavities near the ring’s edge (Spitale and
Porco, 2010; Nicholson et al., 2018).

In the present paper we return to the question of the shape of the
B ring’s outer edge, now armed with the complete set of Cassini radio
and stellar occultation data obtained between mid-2005 and the End-
of-Mission in late-2017. In addition to data from the RSS and VIMS
experiments, we use stellar occultation data obtained by the Ultraviolet
Imaging Spectrometer (UVIS), for a total of 294 measurements.

Our goals are:

• To characterize the forced 𝑚 = 2 mode and its phase lag relative to
Mimas, with the hope of testing the resonant confinement model
of Goldreich and Tremaine (1978).

• To determine the amplitudes and character of the normal modes
with 𝑚 = 1, 2, 3, 4 and 5 and to model their librations. We ex-
plore three possible dynamical explanations for the observed time
variability of the detected modes: (i) true physical oscillations of
their amplitudes and phases, (ii) apparent oscillations due to the
beating of separate normal modes with the same value of 𝑚 but
different numbers of radial nodes and (iii) quasi-periodic changes
in amplitude and phase on decadal timescales as a consequence
of nonlinear and non-resonant coupling between excited modes
with different values of 𝑚.

• To search for additional, weaker perturbations that may shed
further light on how this complex region works.

We have previously presented the results of a similar investigation
of the outer edge of the A ring, using the same occultation data
set (Nicholson et al., 2023).

Our presentation is organized as follows: In Section 2 we outline the
dynamical model used to fit the occultation data, which are themselves
summarized in Section 3. The numerical codes used for orbit fitting and
frequency scanning are reviewed in Section 4. In Section 5 we update
the fits published by Nicholson et al. (2014a), using the expanded
Cassini data set. Our new results are presented in Section 6, and in
Section 7 we discuss their implications for the surface mass density and
viscosity of the outer B ring. We summarize our key findings and open
questions in Section 8.

2. Dynamical model

Underlying all of the orbital fits in this paper is a common kinematic
model for the 𝑚-lobed radial perturbation of a ring edge appropriate
to both a Lindblad resonance due to an external satellite and to free
normal modes of oscillation, also known as edge modes and described
by Nicholson et al. (2018). Our notation follows closely that used in our
previous papers, in particular (Nicholson et al., 2014a), Nicholson et al.
(2014b) and French et al. (2016), so that the fit parameters obtained
here may be compared directly with the corresponding values given
there. The radial perturbation in a ring streamline due to such a mode
can be written as a function of inertial longitude 𝜆 (measured from the
ascending node of Saturn’s equator on Earth’s equator of J2000) and
time 𝑡 in the form

𝛥𝑟(𝑚, 𝜆, 𝑡) = −𝐴𝑚 cos(𝑚[𝜆 −𝛺𝑃 (𝑡 − 𝑡0) − 𝛿𝑚]), (1)

where 𝐴𝑚 and 𝛿𝑚 are the mode’s radial amplitude and phase, respec-
tively, and 𝛺𝑃 is its angular rotation rate or pattern speed. Geometri-
cally, the angle 𝛿𝑚 is the inertial longitude of one of the pattern’s 𝑚
minima at the reference time 𝑡0. In the residual plots shown below we
use the corotating longitude 𝜃 = 𝜆 − 𝛺𝑃 (𝑡 − 𝑡0) − 𝛿𝑚, so the angular
argument becomes simply 𝑚𝜃. For a freely-precessing normal mode,
the pattern speed is expected to be very close to that of a first-order
𝑚 ∶ 𝑚 − 1 Lindblad resonance located at the mean radius of the
streamline (French et al., 1991), or
𝛺𝑃 = [(𝑚 − 1)𝑛 + �̇�sec]∕𝑚, (2)
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where 𝑛 is the local orbital angular velocity and �̇�sec is the local
apsidal precession rate due to the planet’s zonal gravity harmonics.2 In
general, the integer 𝑚 can be either positive or negative, corresponding
to ILR-type modes with 𝛺𝑃 < 𝑛 or OLR-type modes with 𝛺𝑃 > 𝑛,
respectively. (This terminology refers to an inner or outer Lindblad
resonance, which the normal mode perturbations strongly resemble.)
The former are expected to occur at the outer edges of rings, whereas
the latter should be found at inner edges, as discussed in Nicholson
et al. (2014b) and French et al. (2016) and reviewed by Nicholson
et al. (2018). At the outer edge of the B ring, only ILR-type modes
are expected (i.e., 𝑚 > 0). A normal mode with 𝑚 = 1 is equivalent
to a freely-precessing Keplerian ellipse, with 𝛺𝑃 = �̇�sec, the apsidal
precession rate, and 𝛿1 = 𝜛0, the longitude of pericenter at 𝑡 = 𝑡0.

In the case of perturbations by an external satellite, 𝛺𝑃 is deter-
mined by the relevant term in the satellite’s gravitational potential. For
the B ring edge, the resonant perturbations are due to the Mimas 2:1
inner Lindblad resonance for which 𝑚 = 2 and 𝛺𝑃 = 𝑛Mimas. Here, we
expect that 𝛿2 = 𝜆0Mimas, the mean longitude of Mimas at 𝑡 = 𝑡0, although
in our fits we allow for a small offset 𝛿𝜆 to account for the anticipated
phase lag between the radial minimum and the direction towards the
satellite. (A positive value of 𝛿𝜆 means that the radial minimum leads
Mimas in longitude.)

In the current paper, we shall also be concerned with modes whose
amplitude and phase oscillate, or librate about their average values.
Such oscillations could arise in several different ways, as outlined
below. To handle this situation we generalize Eq. (1) to the form

𝛥𝑟(𝑚, 𝜆, 𝑡) = −𝐴𝑚 cos(𝑚𝜃 − 𝜙𝐿)

= −𝐴𝑚 cos(𝑚[𝜆 −𝛺𝑃 (𝑡 − 𝑡0) − 𝛿𝑚] − 𝜙𝐿),
(3)

where both 𝐴𝑚 and 𝜙𝐿 are slowly-varying functions of time. Following
the standard model used to describe secular perturbations of asteroid
or satellite orbits (Murray and Dermott, 1999), or that introduced
by Hedman et al. (2010) and Spitale and Porco (2010) to describe
resonant librations associated with the Mimas 2:1 ILR, we write 𝐴𝑚 =
𝑎𝑒 and describe these periodically-varying parameters in terms of the
Cartesian quantities ℎ = 𝑒 cos(𝜙𝐿) and 𝑘 = 𝑒 sin(𝜙𝐿) via the expressions

ℎ = 𝑒0+𝑒1 cos[𝛺𝐿(𝑡 − 𝑡0) − 𝛿𝐿]

𝑘 = 𝑒1 sin[𝛺𝐿(𝑡 − 𝑡0) − 𝛿𝐿],
(4)

where 𝑒0 and 𝑒1 are constants, 𝛺𝐿 is the libration frequency and 𝛿𝐿
is a constant specifying the phase of the libration.3 Geometrically, the
vector (ℎ, 𝑘) moves around a circle of radius 𝑒1 at an angular rate 𝛺𝐿,
with the center of the circle offset from the origin by an amount 𝑒0
along the +ℎ-axis. In the context of secular or resonant perturbations,
𝑒0 is referred to as the forced eccentricity and 𝑒1 as the free or proper
eccentricity. In the present situation, 𝑎𝑒0 and 𝑎𝑒1 simply represent the
average and variable components of the mode’s amplitude 𝐴𝑚. In terms
of ℎ(𝑡) and 𝑘(𝑡), the instantaneous values of 𝑒 and 𝜙𝐿 are given by

𝑒 =
√

ℎ2 + 𝑘2

𝜙𝐿 = tan−1(𝑘∕ℎ).
(5)

Similar expressions are given by Hedman et al. (2010) in Eqns. (35–
40) and by Spitale and Porco (2010) in Eqns. (6 & 11); see also
Fig. 4 in Spitale and Porco (2010) for a graphical representation of the
motion. From Eq. (4) we see that the mode amplitude 𝐴𝑚 = 𝑎𝑒 is a
maximum when 𝜙𝐿 = 0 and the angle 𝛺𝐿(𝑡 − 𝑡0) − 𝛿𝐿 is zero, modulo
2𝜋, or when

𝑡 − 𝑡0 = 𝛿𝐿∕𝛺𝐿 + 2𝜋𝑘∕𝛺𝐿, (6)

2 Expressions for 𝑛 and �̇�sec accurate to order 𝐽6 are given by Nicholson
et al. (2014b), Eqns. (3–8) and Nicholson et al. (2018), Eqns. (26 & 27).

3 For simplicity, we refer to this motion as libration, implying an oscillation
in 𝜙𝐿, but this can also include the case where 𝑒1 > 𝑒0, when the angle 𝜙𝐿
actually circulates continuously through 360◦.
3

where 𝑘 is any integer.
As noted above, librations of this form can arise in several dis-

tinct ways, as outlined by Longaretti (2023). In the first and simplest
scenario, the amplitude and phase of a single mode oscillate about
mean values given by 𝐴𝑒0 and 𝛿𝑚, perhaps due to a viscously-induced
overstability as suggested by Borderies et al. (1985). In this case the
libration frequency is a function of both the surface mass density of
the ring 𝜎 and of its effective viscosity 𝜈 (Longaretti, 2018). A second
scenario was introduced by Spitale and Porco (2010), who showed
that such a model for a ring edge is mathematically equivalent to a
superposition of two independent normal modes with the same value
of 𝑚, radial amplitudes 𝑎𝑒0 and 𝑎𝑒1 and slightly different pattern speeds
𝛺0 and 𝛺1. Geometrically, one may imagine two independent normal
modes, one with amplitude 𝑎𝑒0 rotating at a rate 𝛺0 and the other
with amplitude 𝑎𝑒1 and angular frequency 𝛺1, combining to produce a
single, pulsating, rotating perturbation with a beat frequency equal to
|𝑚(𝛺1 −𝛺0)| and an amplitude that varies from a minimum of 𝑎|𝑒0 − 𝑒1|
to a maximum of 𝑎(𝑒0 + 𝑒1). In this case we somewhat arbitrarily
esignate the larger-amplitude mode as ‘mode 0’ and choose 𝛺𝑃 = 𝛺0.
he corresponding libration frequency is then given by

𝐿 = 𝑚(𝛺1 −𝛺0). (7)

The factor of 𝑚 arises because each mode has 𝑚 radial minima and
axima.) A third scenario may arise if nonlinear interactions between
ormal modes with different values of 𝑚 lead to the exchange of energy
etween the modes and thus result in slow and unpredictable variations
n their amplitudes. In this case, the librations are unlikely to be strictly
eriodic, but they may appear so over a short span of observations.

There are thus at least two dynamically distinct situations that can
rise, one in which a single mode oscillates in amplitude and phase
nd the other in which two stable modes with the same value of 𝑚 and
imilar pattern speeds interfere to produce a beating pattern. These two
cenarios are indistinguishable when only the shape of a single ring
treamline – such as a ring edge – is analyzed, so that in practice we
o not make any distinction between them in analyzing the occultation
easurements of the ring edge. But if the radial distribution of eccen-

ricity across the perturbed region of the ring could be assessed, and
ts temporal variation established, then these two situations might look
uite different. We return to these alternate possibilities in Section 7.1.

For some values of 𝑚 we have found it necessary to introduce
ore than one librational term, replacing Eq. (4) by the more general

xpression:

= 𝑒0+
𝑛
∑

𝑗=1
𝑒𝑗 cos[𝛺𝐿,𝑗 (𝑡 − 𝑡0) − 𝛿𝐿,𝑗 ]

𝑘 =
𝑛
∑

𝑗=1
𝑒𝑗 sin[𝛺𝐿,𝑗 (𝑡 − 𝑡0) − 𝛿𝐿,𝑗 ]

(8)

here each librational term has its own frequency 𝛺𝐿,𝑗 and phase 𝛿𝐿,𝑗 .
ig. 1 illustrates the overall eccentricity and phase for a mode with two
ibration terms, plotted in (ℎ, 𝑘) space. The radial line from the origin
o the center of the larger circle of length 𝑒0 is fixed, while the radius
ectors of the two smaller circles (labeled 𝑒1 and 𝑒2) rotate at angular
ates of 𝛺𝐿,1 and 𝛺𝐿,2, respectively. (Note that this diagram shows just
he variation in amplitude 𝑒 and phase 𝜙𝐿 of the mode, rather than
he shape of the ring streamline itself, which is an 𝑚-lobed figure, or
ts orientation relative to inertial space, which is controlled by 𝛺𝑃 and
𝑚.) In this situation, we label the additional libration terms so that
0 > 𝑒1 > 𝑒2, etc.

In general, a particular ring streamline may be perturbed simulta-
eously by several different normal modes, each with its own value of
he azimuthal wavenumber 𝑚, and each of these modes can librate with
ne or more components, following Eq. (8). Such a model is specified by
set of free parameters given by the mean radius 𝑎, three parameters

or the mean amplitude and phase for each mode (𝑎𝑒0, 𝛺𝑃 , 𝛿𝑚) and
n additional three parameters for each libration (𝑎𝑒 , 𝛺 , 𝛿 ). A
𝑗 𝐿,𝑗 𝐿,𝑗
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Fig. 1. Illustration of the time-varying eccentricity vector {ℎ, 𝑘} for a mode with two
ibration terms and a mean amplitude 𝑎𝑒0. The two smaller circles have radii of 𝑒1

and 𝑒2 and rotate at angular rates of 𝛺𝐿,1 and 𝛺𝐿,2, respectively. The instantaneous
amplitude and phase of the mode are indicated by the dashed line and specified by 𝑎𝑒
and 𝜙𝐿.
Source: Adapted from Spitale and Porco (2010), Fig. 4.

particular mode has 𝑚 lobes of radial amplitude 𝐴𝑚(𝑡) = 𝑎𝑒(𝑡) with
adial minima located at longitudes where 𝑚𝜃 = 𝜙𝐿, or at

min(𝑡) = 𝛺𝑃 (𝑡 − 𝑡0) + 𝛿𝑚 + 𝜙𝐿(𝑡)∕𝑚 + 2𝜋𝑘∕𝑚, (9)

here 0 ≤ 𝑘 ≤ 𝑚 − 1. Geometrically, the pattern has a mean amplitude
𝑒0 and rotates relative to inertial space at a mean rate 𝛺𝑃 , while oscil-
ating in both amplitude and orientation at a frequency (or frequencies)
𝐿,𝑗 .

. Observations

The data used for this study come from a large set of Cassini ring
ccultations observed over the full course of the spacecraft’s 2004–2017
rbital tour of the Saturn system.4 Details of the relevant VIMS, UVIS,
nd pre-2012 RSS occultation observations are provided in Nicholson
t al. (2014a,b) and French et al. (2010, 2016, 2017), and are not
epeated here. A total of 305 measurements of the B ring edge radius
ere included, with 58 from RSS, 115 from VIMS and 132 from UVIS.
ully calibrated versions of the occultation data are available from
ASA’s Planetary Data System (PDS) Ring-Moon Systems Node.5

.1. Post-2011 RSS ring occultations

In addition to the above data sets, we have included post-2011 RSS
ccultation results that contributed significantly to the final tally of B
ing measurements used for this work, and these deserve more detailed
iscussion.

Unlike stellar occultation observations, which require only modest
rocessing from their raw form to obtain useful science results, raw RSS
ing occultation observations are strongly affected by diffraction effects
hat must by removed in order to determine the intrinsic optical depth
rofiles of the rings (Marouf et al., 1986). The diffraction reconstruction
elies on a highly accurate measurement of the radio signal’s phase,
hich requires a very stable transmitted frequency from the spacecraft.

n late 2011, the Cassini spacecraft’s ultrastable oscillator (USO) failed,
nd the auxiliary onboard oscillator had inadequate frequency stability

4 Although spacecraft imaging data have the advantage of revealing the
ontinuous shape of the ring edge at discrete observing intervals (Spitale and
orco, 2010), the occultation data are more useful for quantifying the changes
n shape over time, a key objective of this study.

5 https://pds-rings.seti.org/
4

to allow for accurate diffraction reconstruction of ring occultations.
Instead, a novel mode of two-way RSS occultation experiments was
implemented in 2012. Rather than depending on a stable onboard
frequency source for the spacecraft’s transmitted signal, an uplink radio
signal from an Earth-based Deep Space Network (DSN) antenna was
transmitted to the spacecraft, where it was phase-locked, amplified and
then retransmitted to the ground, preserving the hydrogen maser-based
frequency stability of the original signal from the DSN.

A key complication is that the uplinked signal passed through the
rings on the way to the spacecraft, resulting in a phase distortion
preserved in the downlink signal. In effect, the observations retain
a ‘‘double exposure’’ or ‘‘phase echo’’ associated with the diffraction
pattern of the ring region traversed by the uplink signal, coadded to the
diffraction phase of the downlink signal. This contamination of the final
received phase during an RSS occultation experiment similarly affects
atmospheric occultations, but in this case the use of multi-frequency
observations can correct for the phase distortion and enable accurate
retrieval of the vertical profile of the atmospheric structure (Schinder
and colleagues, 2015).

For ring occultations, on the other hand, no general solution has yet
been found to remediate the phase contamination that often results in
badly distorted diffraction-corrected radial optical depth ring profiles.
Under special circumstances, however, the observed diffraction pattern
of specific ring features may be relatively unaffected by the uplink
phase distortion. For example, it is possible to retrieve the intrinsic
optical depth profile of an isolated narrow ringlet such as the F ring
if the phase echo is sufficiently radially separated from the main
diffraction signature of the downlink signal.

It is also possible, under the right geometric circumstances, to recon-
struct the intrinsic sharp edge of a nearly opaque ring bounded by free
space, such as the outer edges of the A and B rings. Fortunately, a sig-
nificant fraction of the post-2011 RSS occultations had such favorable
geometry. In the end, we were able to apply standard diffraction-
reconstruction techniques (Marouf et al., 1986) to process the X-band
(3.6 cm wavelength) observations at 1-km effective resolution and to
obtain accurate measurements of the B ring outer edge from 24 of 41
post-USO-failure RSS occultations that intersected the B ring, expanding
the available data for the post-2011 period of the Cassini orbital tour.

3.2. Measuring the location of the B ring edge

As in our previous studies, we have included only high-SNR events
with spatial resolution of 1 km or better that could be mapped onto an
absolute radius scale with sub-km accuracy. For each such occultation
that included the outer edge of the B ring, we fitted a logistic model
curve to the radial optical depth profile of the edge to determine
the corresponding midtime. Using a Saturn ring orbit model similar
to Fit #1 in French et al. (2017) but augmented to include the full
set of 2005–2017 Cassini occultation data, we determined the orbital
radius, inertial longitude, and ring plane intercept time of each B ring
edge measurement. These represent the fundamental observables for
our B ring orbit fits. The typical uncertainty in an individual radius
determination, including systematic effects, is well below 1 km. Post-fit
RMS residuals of ∼5 km for our best B ring model fits greatly exceed this
measurement uncertainty, and instead probably stem from complexities
in the intrinsic shape of the B ring edge that are not captured by our
kinematical models.

From preliminary orbit fits that included normal modes for 𝑚 = 1
through 5 and the 𝑚 = 2 mode forced by Mimas, we identified 11
of the 305 individual data points as having unacceptably large (>20
km) post-fit residuals, corresponding to ∼4 standard deviations. These
are listed in Table 1. Such outliers were a characteristic of our earlier
B ring investigation (Nicholson et al., 2014a) and were also noted
by Spitale and Porco (2010) in their analysis of imaging mosaics. They
interpreted these large but localized radial disturbances in the B ring

edge as evidence for the presence of massive bodies embedded within

https://pds-rings.seti.org/
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Fig. 2. Representative profiles of the B ring edge over two libration periods of the 𝑚 = 2 pattern, plotted in radius (on the left axis) and time (on the right axis) as a function of
longitude relative to Mimas, whose position is indicated by the large filled circles. The left panel shows the 𝑚 = 2 mode only, while the right panel includes all five modes. The
bottom profiles correspond to a time when the forced and free components of the 𝑚 = 2 mode are in phase (i.e., 𝜙𝐿 = 0), so that the amplitude of the mode is at its maximum
value. Successive profiles are shown at intervals of 1/9 of the 𝑚 = 2 libration period, and offset upwards by 100 km for clarity. Horizontal dashed lines mark successive 𝑚 = 2
libration periods of 5.354 yr.
Table 1
Omitted measurements of the B ring edge with large post-fit residuals.

Occultation UTC (observed) 𝑟obs (km) 𝑟model (km) 𝑑𝑟 (km) 𝜆 (deg)

RSS_013E_X14 2005 AUG 20 20:37:46.8732 117569.19 117548.78 20.40 79.57
UVIS_EpsCen065I 2008 APR 19 11:32:19.8837 117551.54 117518.50 33.04 204.26
VIMS_alpAur110E 2009 MAY 09 16:45:55.8991 117583.65 117614.00 −30.35 243.49
RSS_180I_X14_65 2013 JAN 31 13:48:24.4050 117585.38 117557.22 28.16 299.28
VIMS_2Cen194E 2013 JUL 08 21:30:05.0270 117555.40 117585.98 −30.57 248.19
RSS_196I_X65_65 2013 AUG 08 18:24:19.3052 117584.64 117545.15 39.49 228.88
UVIS_AlpVir211I 2015 JAN 08 03:50:58.4312 117598.84 117627.00 −28.16 168.48
VIMS_alpSco238I 2016 JUL 19 13:45:57.5389 117557.58 117584.09 −26.51 233.76
RSS_236E_X43_14 2016 JUN 06 10:42:10.8061 117566.38 117594.51 −28.13 109.65
RSS_253E_X14_63 2016 DEC 19 20:40:19.1470 117581.59 117554.33 27.26 188.80
VIMS_alpOri277I 2017 JUN 04 22:40:28.7150 117598.39 117573.89 24.50 352.64
n
n
t
i
E
t

the B ring itself. We excluded this small number of outliers from our
final data set because they unduly inflated the formal errors of the final
fit parameters. The total number of data points used in our current fits
is thus 294, or more than twice the 133 B ring edge measurements used
by Nicholson et al. (2014a) .

4. Orbit determination

As in Nicholson et al. (2014a), we determine the best-fitting orbit
model for the B ring edge using a straightforward and well-tested non-
linear least squares procedure that minimizes the sum of squared dif-
ferences between the observed and model radii, 𝑟obs(𝜆, 𝑡) and 𝑟mod(𝜆, 𝑡),
where

𝑟mod(𝜆, 𝑡) = 𝑎 +
𝑀
∑

𝛥𝑟(𝑚𝑖, 𝜆, 𝑡). (10)
5

𝑖=1
Here, 𝑎 is the semimajor axis of the B ring’s outer edge and the
summation is performed over the radial perturbations 𝛥𝑟(𝑚, 𝜆, 𝑡) given
by Eq. (3) associated with the 𝑀 separate modes (i.e., values of 𝑚) for
a given ring model. The goodness of each fit is characterized by the
root-mean-square residual per degree of freedom 𝜎, where we define

𝜎2 = 1
𝑁 −𝑁𝑝

𝑁
∑

𝑖=1
[𝑟obs(𝜆, 𝑡) − 𝑟mod(𝜆, 𝑡)]2. (11)

Here, 𝑁 is the number of independent fitted data points and 𝑁𝑝 is the
umber of parameters in the fit. We approach our search for possible
ormal modes by first fitting a circular model to the data, forming
he residuals, and then scanning over a range of pattern speeds 𝛺𝑃
n the vicinity of the predicted value for the mean radius, based on
q. (2) and candidate wavenumbers from 𝑚 = 1 to 𝑚 = 20 for ILR-
ype perturbations. For each assumed value of 𝑚 and 𝛺𝑃 , we solve for

the best-fitting amplitude 𝐴 and phase 𝛿 and record the value of the
𝑚 𝑚
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Fig. 3. A scan in pattern speed for 𝑚 = 2 normal modes, after removing the signatures
f all other modes listed in Table 2. The upper panel shows the root-mean-square
esidual of the fit 𝜎 as the pattern speed is scanned across the expected value, while
he lower panel shows the fitted radial amplitude of the mode 𝐴2 for the same scan.
ote the detection of significant power at two different pattern speeds, 381.984◦ d−1 and
82.075◦ d−1, with radial amplitudes of 31 and 36 km. The solid vertical line indicates
he predicted value of 𝛺𝑃 at the mean radius of the B ring’s outer edge, or 381.913◦ d−1,
hile the dashed line highlights the value of 𝛺𝑃 for the strongest peak in the scan,
ith a minimum 𝜎 = 23.9 km. The dot-dashed line indicates the average mean motion
f Mimas of 381.9835◦ d−1.

MS residual 𝜎. We then add the strongest of the detected modes to the
inematical model of the B ring edge, form a new set of residuals, and
epeat the frequency scanning process to search for additional modes.
ith the addition of successive normal modes, the post-fit value of 𝜎

s reduced and the sensitivity to weaker modes and possible libration
erms is increased.

Once a preliminary set of global normal modes has been identified,
e divide the dataset into smaller segments and examine the observed
ariation in amplitude for each mode over the 13 yr time span of
he observations. Based on these shorter-period fits, we solve for the
haracteristics of any necessary libration terms, as described by Eq. (4)
r (8), that can best account for the long-term trends seen in the mode
mplitudes. In the next two sections, we turn to a description of the
esults of this process.

. Reference model

Because the Cassini occultation data set has more than doubled in
ize from that used by Nicholson et al. (2014a) — 294 observations
6

Table 2
Reference model fit to Cassini data.

Parameter Symbol Value

mean radius 𝑎(km) 117570.32 ± 0.42
Forced 𝑚 = 2 mode 𝑎𝑒0(km) 33.20 ± 0.63

𝛺𝑃 (◦ d−1) 381.9843 ± 0.0005
𝛿2(◦) 346.83 ± 0.73

𝑚 = 2 libration 𝑎𝑒1(km) 39.40 ± 0.64
𝛺𝐿(◦ d−1) 0.1841 ± 0.0008
𝑃𝐿 (yr) 5.354 ± 0.023
𝛿𝐿(◦) 96.07 ± 1.86

Epoch 𝑡0 UTC 2008 Jan 1 12:00
RMS residual 𝜎(km) 6.98
# data N 294
Fit ID ringfit_v1.8.Sa025S-CMF-V6980-RF-B95

𝑚 𝐴𝑚 (km) 𝛺𝑃 (◦d−1) 𝛿𝑚 (◦)

1 22.35 ± 0.59 5.0814 ± 0.0011 69.34 ± 2.14
3 9.54 ± 0.60 507.7185 ± 0.0008 24.48 ± 1.53
4 8.38 ± 0.58 570.5293 ± 0.0008 6.91 ± 1.43
5 5.87 ± 0.60 608.2073 ± 0.0008 67.98 ± 1.59

now vs 133 in the previous work — and also doubled in duration
(thirteen vs six years), our first step is to redo the best fit in Nicholson
et al. (2014a) using all the currently-available Cassini occultation data.
or this purpose, we compare our new results with those of Fit 11
n Nicholson et al. (2014a), as described in their Table 5. Note that both
its exclude the relatively small number of pre-Cassini observations,

derived from Voyager and Earth-based occultations. Experiments show
that while the longer time baseline provided by these earlier data im-
proves the accuracy with which pattern speeds can be determined, the
much sparser temporal coverage also leads to problems with aliasing
and multiple solutions.

This fit, which we refer to henceforth as our reference model, in-
cludes – in descending order of importance – a circulating 𝑚 = 2 mode,

free eccentricity (i.e., an 𝑚 = 1 mode), and fixed-amplitude normal
odes with 𝑚 = 3, 4 and 5. The 𝑚 = 2 mode has two components: a

orced eccentricity (which we denote as 𝑒0) due to the Mimas 2:1 ILR
nd a free eccentricity (denoted as 𝑒1) that we interpret as a normal
ode. Departing slightly from Fit 11 in Nicholson et al. (2014a), where
e fixed 𝛺𝑃 for the forced 𝑚 = 2 mode at the average value of Mimas’s
ean motion in 2005–2010 and fixed the corresponding phase 𝛿2 to

be Mimas’s mean longitude at our reference time, in the current fit
we permit both parameters to float, with a priori values corresponding
to the Mimas resonance. (Alternate fits in which 𝛺𝑃 and 𝛿2 were
fixed at their expected values were almost indistinguishable.) Table 2
presents the results of this reference fit, which we will use below as a
standard against which to compare our new fits that include additional
librations.

A comparison with the parameters of Fit 11 of Nicholson et al.
(2014a) reveals the following:

• The mean radius of the B ring edge is almost unchanged at 𝑎 =
117, 570.32 ± 0.42 km. This is ∼14.5 km exterior to the nominal
location of the Mimas 2:1 ILR at 𝑎res = 117, 555.8 km (Spitale and
Porco, 2010).

• The minimum post-fit root-mean-square residual per degree of
freedom is 6.98 km, comparable to but slightly lower than the
7.81 km obtained for Fit 11. This remains much larger than
the typical measurement errors, which are well under 1 km for
this sharp, well-defined edge, and also much larger than post-
fit residuals obtained for most other sharp-edged features in the
Cassini Division (French et al., 2016), suggesting that significant
unmodeled radial perturbations remain.

• The larger component of the 𝑚 = 2 mode is again the free (or
normal) mode, whose amplitude has increased from 37.1 km
to 𝑎𝑒1 = 39.40 ± 0.64 km, while the forced component due to
the Mimas resonance is almost unchanged at 𝑎𝑒 = 33.20 ±
0
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Fig. 4. Radius residuals from our reference model when the free and forced 𝑚 = 2 terms are set to zero, plotted as a function of 𝑚𝜃, for 𝛺𝑃 = 381.9843◦ d−1. The upper left panel
shows the full set of observations, with substantial scatter. The observations are divided into eight different time intervals in the remaining panels, showing substantial systematic
variations in the amplitude and phase of the 𝑚 = 2 pattern over time. See text for details of the model fit results included in these panels.

Fig. 5. The variation in the 𝑚 = 2 amplitude 𝑎𝑒, as computed from the reference model. Blue dots mark the model values of 𝑎𝑒 at times of individual stellar occultation observations,
and the red symbols mark RSS observations. Fitted average values over the eight selected intervals in Fig. 4 are shown as large ‘+’ symbols, with the vertical extent showing
the formal uncertainty in the amplitude and the horizontal extent representing the time span of data used in each fit. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. The variation in the 𝑚 = 2 libration phase 𝜙𝐿, as computed from the reference model. Note the highly non-uniform rate 𝑑𝜙𝐿∕𝑑𝑡 as the time-varying eccentricity vector
weeps rapidly through its minimum range. As in Fig. 5, blue symbols mark the model values at times of stellar occultation observations and red symbols mark RSS observations.
he fitted average phase values over the eight selected intervals in Fig. 4 are shown as large ‘+’ symbols, with the vertical extent showing the formal uncertainty in the average

phase over the interval and the horizontal extent representing the time span of data used in each fit. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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0.63 km. The fitted pattern speed for the forced component is
𝛺𝑃 = 381.9843 ± 0.0005◦ d−1, very close to the average mean
motion of Mimas of ∼381.986◦ d−1 during the period of the Cassini
mission. The libration frequency remains almost unchanged at
𝛺𝐿 = 0.1841 ± 0.0008◦ d−1 with a corresponding period 𝑃𝐿 =
5.354 ± 0.023 yr. Geometrically, this means that the angle 𝜙𝐿
circulates through 360◦ once every libration period (= 2𝜋∕𝛺𝐿)
and that the minor axis of the 𝑚 = 2 pattern rotates through
360◦ with respect to Mimas once every two libration periods, or
∼10.7 yr (see Eq. (9)). (See Section 7.2 for further discussion of
the significance of this point and of the phase lag of the forced
component.)

• Next in importance is the 𝑚 = 1 mode, or free eccentricity, which
has increased somewhat in amplitude from 20.4 to 22.35±0.59 km,
but which has maintained its pattern speed almost unchanged at
5.0814 ± 0.0011◦ d−1.

• The 𝑚 = 3 mode, on the other hand, has decreased in amplitude
from 12.5 to 9.54± 0.60 km, while increasing its pattern speed by
∼6𝜎 to 507.7185 ± 0.0008◦ d−1.

• Next is the 𝑚 = 4 mode, which has increased significantly in
amplitude from 5.9 to 8.38±0.58 km, while increasing its pattern
speed by ∼4𝜎 to 570.5293 ± 0.0008◦ d−1.

• Lastly we have the 𝑚 = 5 mode, which is almost unchanged in
amplitude at 5.87 ± 0.60 km and in pattern speed at 608.2073 ±
0.0008◦ d−1.

To illustrate the reference model, Fig. 2 shows snapshots of the
co-added modes over a period of two libration cycles, in the form of
profiles of the radial displacement of the B ring edge as a function
of longitude relative to Mimas. Note that the 𝑚 = 2 pattern slowly
circulates relative to Mimas, with an amplitude of ∼73 km when its
forced and free components are in phase but only ∼6 km when the two
components are out of phase by 𝜋.

6. Results

Having updated the mode fits of Nicholson et al. (2014a) with the
8

more complete Cassini data set, we turn to our major task, which is b
to characterize the decadal-scale variations in the identified normal
modes, if any, and to search for additional perturbations that may have
escaped detection in previous analyses of the B ring edge.

For each mode, we scan a range of pattern speeds for the specified
value of 𝑚 in the neighborhood of the expected rate, as given by Eq. (2),
in order to verify the reality of the mode and search for evidence of
additional, nearby modes. Each scan is constructed in the same fashion:
(i) the fit parameters for all 𝑚-values not being scanned are frozen at
their best-fit values in Table 2; (ii) the fit parameters for the mode in
question other than the pattern speed 𝛺𝑃 are allowed to float; (iii)
the value of 𝛺𝑃 is varied across a range of ±1◦ d−1 centered on the
predicted rate at the edge of the B ring, and (iv) for each assumed
value of 𝛺𝑃 the remaining mode parameters 𝐴𝑚 and 𝛿𝑚 are adjusted
to minimize the value of 𝜒2. In this way, the significance of each mode
can be assessed, with the parameters of all other modes kept constant
at their optimal values.

The rms residuals far away from the best-fitting value of 𝛺𝑃 reflect
the quality of the fit without the mode in question; for the dominant
𝑚 = 2 mode this is ∼34 km. For the weaker 𝑚 = 3, 4 and 5 modes, the
baseline rms residuals are always under 10 km.

We begin with the dominant 𝑚 = 2 mode and then move on to the
maller-amplitude modes with 𝑚 = 1, 3, 4 and 5.

.1. Mimas and the dominant m=2 pattern

For the 𝑚 = 2 scan, both the forced and free amplitudes 𝑎𝑒0 and
𝑒1 were set to zero and the scanning program searched for a single,
est-fitting mode. Fig. 3 shows the resulting scan. The predicted pattern
peed for a free normal mode at the edge of the B ring is 381.913◦ d−1,
s indicated by the vertical solid line, while the pattern speed for the
orced Mimas 2:1 perturbation is at 𝑛Mimas = 381.9835◦ d−1, indicated
y the dot-dashed line. As might be expected from the reference fit
arameters in Table 2, the scan shows two distinct peaks in amplitude
n the lower panel – and two corresponding minima in the post-fit
esiduals in the upper panel – at ∼381.984◦ d−1 and 382.075◦ d−1. The
igher and faster peak corresponds to the free 𝑚 = 2 mode while the
ower and slower peak corresponds to the forced mode. The fitted li-

◦ −1
ration frequency in Table 2 of 𝛺𝐿 = 0.1841 d is twice the difference
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Fig. 7. A scan in pattern speed for 𝑚 = 1 normal modes, after removing the signatures
f all other modes listed in Table 2. The format is the same as Fig. 3. Here significant
ower is seen at only one frequency, at 5.083◦ d−1, with a radial amplitude of 23.6 km
nd a minimum 𝜎 = 4.4 km.

etween the two mode peaks, as expected from Eq. (7). Note that,
ecause the scanning procedure is only able to fit one pattern speed
t a time, the minimum rms residual seen in Fig. 3 is still quite large
t ∼24 km. Finally, we note that the resonance radius6 corresponding
o the free mode is located at ∼117,537 km, or 33 km interior to the

mean radius of the B ring edge.
The existence of these two 𝑚 = 2 components of comparable

trength results in a strong beat signature that can also be modeled as
circulation in the amplitude and phase of a single 𝑚 = 2 mode, with

arameters as listed in Table 2. As a result, the amplitude of the 𝑚 = 2
attern varies significantly during the Cassini mission, as first noted
y Hedman et al. (2010) and Spitale and Porco (2010). This amplitude
ariation is clearly revealed in Fig. 4, which shows fits to subsets of
he occultation data in eight different time intervals, selected to match
he most densely-sampled periods. For each period, the radius residuals
re calculated relative to our adopted reference model – except that the
mplitudes of the 𝑚 = 2 terms, 𝑎𝑒0 and 𝑎𝑒1 are set to zero – and plotted
s the mode argument 𝑚𝜃 = 𝑚[𝜆 − 𝛺𝑃 (𝑡 − 𝑡0) − 𝛿𝑚] in Eq. (1), where

in this case 𝑚 = 2 and 𝛺𝑃 = 381.9844◦ d−1, corresponding to the mode
forced by Mimas. In this figure, and in the similar ones to follow for
other values of 𝑚, the upper left panel shows the complete set of Cassini

6 That is, the semimajor axis at which Eq. (2) is satisfied.
9

observations, while the eight successive panels reveal any systematic
changes in both the amplitude and the phase of the 𝑚 = 2 pattern over
time.

Because the argument 𝑚𝜃 includes the best-fitting global pattern
speed and average phase for the mode, as represented by the param-
eters 𝛺𝑃 and 𝛿𝑚 in Eq. (1), any shorter-term variations in the mode’s
phase will show up here as shifts in the position of the minimum in
radius away from 𝑚𝜃 = 0 from one time period to another. Indeed,
such variations are clearly seen in this figure, with the radial minimum
varying from 𝑚𝜃 = −86◦ in 2006/07 to +120◦ in 2017. Moreover, the
amplitude varies from a minimum of ∼6 km in 2017 to a maximum of
∼70 km in 2009. To quantify these variations for the time period of
the data shown in each panel, we fit a simple sinusoidal model to the
distribution of radius residuals of the form:

𝑑𝑟 = −𝑎𝑒 cos(𝑚𝜃 − 𝜙𝐿), (12)

following Eq. (3). The fitted values (and their formal uncertainties) for
𝑎𝑒 and 𝜙𝐿 are listed in each panel.

These fitted variations in the amplitude of the 𝑚 = 2 mode are
compared with those predicted by the circulating model in the refer-
ence fit in Fig. 5, where the colored symbols mark the times of the
individual observations (blue for stellar occultations and red for RSS
measurements). The eight large ‘+ ’ symbols mark the fitted values
for 𝑎𝑒 from Fig. 4, with the vertical component showing the formal
uncertainty in the amplitude fit and the horizontal length spanning
the time interval of the data used for the fit. The second and eighth
intervals span the minima in 𝐴2 in 2006 and 2017, while the fourth
interval spans the maximum in 2009. The observations sample a little
over 2.5 libration cycles, or more than one rotation of the 𝑚 = 2 pattern
relative to Mimas, albeit with several gaps owing to the absence of
ring occultation measurements when Cassini was orbiting Saturn in the
equatorial plane. Note that the amplitude lingers near its maximum
value of 72.6 km for about a year, while moving rapidly through
its minimum of 6.2 km in only a few months, making it difficult to
catch the system in this state. In general, the agreement between the
reference model and these individual fits over the eight separate time
ranges is excellent. (Very similar results are obtained when the 𝑚 = 2
amplitude 𝑎𝑒 is computed using our adopted final fit.)

Because 𝑎𝑒1 > 𝑎𝑒0 for the 𝑚 = 2 mode, there is a substantial variation
in the phase of this mode compared to that predicted by Eq. (1). In
fact, our model implies that 𝜙𝐿 actually circulates through 360◦, as
concluded originally by Spitale and Porco (2010), although the system
spends relatively little time with |𝜙𝐿| > 90◦. This may be seen in Fig. 6,
which shows the distribution of the B ring edge measurements used
in this study along with the corresponding phases predicted by the
reference model 𝜙𝐿. We find that |𝜙𝐿| > 90◦ for about 9 months every
5.4 years, centered on the times of the amplitude minima in 2006.7,
2012.1 and 2017.5. (Amplitude maxima occur in 2009.4 and 2014.8,
when 𝜙𝐿 passes through zero.)

Updated values for the 𝑚 = 2 libration parameters are included in
our final fit that includes all known modes and librations (see Table 3
below). Following a similar process to that used for the other wavenum-
bers (described below), we also scanned the residuals to this final fit to
search for any additional, previously-undetected contributions to the
𝑚 = 2 pattern, but found none.

6.2. The m=1 pattern

Fig. 7 shows the pattern speed scan for the 𝑚 = 1 mode, whose
predicted value at the edge of the B ring is �̇�sec = 5.059◦ d−1, as
indicated by the vertical solid line. Here we see a single strong peak
in amplitude at 𝛺𝑝 = 5.083◦ d−1, somewhat faster than the predicted
value. The corresponding resonance radius is ∼117,419 km, or 151 km
interior to the mean radius of the ring edge.

The reference fit for the 𝑚 = 1 mode assumes a constant amplitude

over the entire set of observations, but Nicholson et al. (2014a) noted
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Fig. 8. Radius residuals from our final B ring model when the 𝑚 = 1 terms are set to zero, plotted as a function of 𝑚𝜃, for 𝛺𝑃 = 5.0824◦ d−1. The upper left panel shows the full
set of observations, with substantial scatter. The observations are divided into eight different time intervals in the remaining panels, as in Fig. 4, showing substantial systematic
variations in the amplitude of the 𝑚 = 1 pattern over time, particularly after 2010. See text for details of the model fit results included in these panels.
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that 𝐴1 decreased slightly from ∼25 km in 2005 to ∼20 km in 2008/09
(see their Fig. 4). By separating the observations into the same eight
time intervals as for the 𝑚 = 2 mode, we see a more complete picture
of the time variability of the 𝑚 = 1 mode in Fig. 8. (In this and in
subsequent similar figures, we compute the residuals relative to our
final adopted model for the B ring, rather than to the reference model,
since this more realistically shows the radial variations that contribute
to the final fit for each wavenumber.) With a doubling of the timespan
of the observations, we confirm the results of Nicholson et al. (2014a)
but find that 𝐴1 subsequently increased to ∼30 km in 2013, before
falling back to ∼17 km in 2016/17.

Given this evidence for time variability in the 𝑚 = 1 amplitude,
we repeated our frequency scan of the B ring edge residuals after
removal of the main 𝑚 = 1 signal, as well as all other detected normal
modes from our final fit (see Table 3 below), with the results shown
in Fig. 9. We find a much weaker but statistically significant signal
with 𝛺𝑃 = 5.206◦ d−1 and an amplitude of 4.4 km. Combined with the
original 𝑚 = 1 mode with 𝛺𝑃 = 5.0824◦ d−1, this suggests a libration
with 𝛺𝐿 ≃ 0.123◦ d−1, corresponding to a period of ∼8.0 yr.

Although including this libration term in the 𝑚 = 1 mode does
modestly improve the overall fit, it fails to capture well the amplitude
variations seen in Fig. 8. A subsequent frequency scan, after inclusion
of the above libration term, shows evidence for a third statistically-
significant 𝑚 = 1 component with 𝛺𝑃 = 5.250◦ d−1 and an amplitude
of ∼2.8 km, as shown in Fig. 10. This suggests a second libration term
with 𝛺𝐿 ≃ 0.167◦ d−1, corresponding to a period of ∼5.9 yr.

Once this additional component is included in the orbit fit, the
calculated amplitude and phase variations of the 𝑚 = 1 mode provide a
significantly better match to the observations, as shown in Fig. 11. We
10
caution the reader, however, that while this multi-component model
may match our observations over their 13 yr time interval, we do not
know if these librations will maintain their amplitudes, periods, and
phases over timescales of centuries. Instead, it might be better to think
of them simply as quantifying the variability of the 𝑚 = 1 shape of the
B ring edge over the limited period of Cassini observations.

Table 3 includes the final values for all three 𝑚 = 1 components
in our adopted fit, with amplitudes of 𝑎𝑒0 = 23.56 ± 0.51 km, 𝑎𝑒1 =
4.42±0.63 km, and 𝑎𝑒2 = 2.84±0.53 km. The final libration frequencies
are 𝛺𝐿,1 = 0.1145 ± 0.0096◦ d−1 and 𝛺𝐿,2 = 0.1671 ± 0.0150◦ d−1.

6.3. The m=3 pattern

Fig. 12 shows the scan for the 𝑚 = 3 mode, whose predicted pattern
peed at the edge of the B ring is 𝛺𝑃 = 507.530◦ d−1. Here we see
single strong peak in amplitude at 𝛺𝑝 = 507.7189◦ d−1, again faster

han the predicted value, but also two secondary peaks at slightly lower
requencies. The resonance radius corresponding to the strongest peak
s ∼117,541 km, or 29 km interior to the mean radius of the ring edge.

As for the 𝑚 = 1 mode, we again find substantial long-term
variations in the amplitude and phase over time, as shown in Fig. 13,
which follows the same format as Figs. 4 and 8. Beginning at ∼20 km
in 2005, 𝑎𝑒 fell steadily to a minimum of ∼7 km in 2009–2013, rose
to 11 km in 2016, before falling slightly in 2017. The steady decline
between 2005 and 2009 was also noted by Nicholson et al. (2014a).

In our initial attempt to match this pattern, we included a single
libration term for 𝑚 = 3, treating the libration frequency 𝛺𝐿, amplitude
𝑎𝑒1, and phase 𝛿𝐿 as free parameters. The results matched the overall
trend in the amplitude of the mode, but with physically implausible
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Fig. 9. The signature of a second 𝑚 = 1 component with 𝛺𝑃 = 5.206◦ d−1 and an
mplitude of ∼4.4 km, as seen in a normal mode scan. The primary component is at
𝑃 = 5.083◦ d−1, as shown in Fig. 7, while the predicted pattern speed at the edge of

the B ring is 5.059◦ d−1.

values for 𝑎𝑒0 and 𝑎𝑒1 of hundreds of km and a libration period of
hundreds of years, much longer than those found for the 𝑚 = 1 and
= 2 modes. The two components nearly cancel each other out during

he comparatively short interval of the Cassini observations, but lead
o much larger – and implausible – predicted variations at earlier and
ater times.

As with the 𝑚 = 1 case, we then fitted for a second libration
omponent with much more satisfactory results, as shown in Fig. 14.
he dominant component, however, has an uncomfortably long period
f almost 20 yrs – longer than the 13 yr span of the Cassini observations
that is not well-determined by the fit. Table 3 includes the final values

or all three 𝑚 = 3 components in our adopted fit, with amplitudes of
𝑒0 = 11.19 ± 0.53 km, 𝑎𝑒1 = 7.41 ± 0.64 km, and 𝑎𝑒2 = 2.15 ± 0.49
m. The final libration frequencies are the poorly-constrained value
f 𝛺𝐿,1 = −0.050◦ d−1 and 𝛺𝐿,2 = 0.1342 ± 0.0086◦ d−1. (Note that a
egative value of 𝛺𝐿 implies that the eccentricity vector rotates in a
lockwise direction in [ℎ, 𝑘] space and that, if the libration is interpreted
n terms of the beating of two modes with the same 𝑚, that 𝛺1 < 𝛺0 in
q. (7)).
11

c

Fig. 10. The signature of a third 𝑚 = 1 component with 𝛺𝑃 = 5.250◦ d−1 and amplitude
∼2.8 km. The primary and secondary components are at 𝛺𝑃 = 5.083◦ d−1 and 5.206◦ d−1,
as shown in Figs. 7 and 9.

6.4. The m=4 pattern

Fig. 15 shows the scan for the 𝑚 = 4 mode, for which the predicted
pattern speed at the edge of the B ring is 𝛺𝑃 = 570.339◦ d−1. Again we
ee a single strong peak in amplitude at a pattern speed slightly faster
han the predicted value, or 𝛺𝑝 = 570.529◦ d−1. The corresponding
esonance radius is ∼117,544 km, or 26 km interior to the mean radius
f the ring edge.

The observed variations in the 𝑚 = 4 contribution to the shape of
he B ring edge over time are shown in Fig. 16, in the same format as
igs. 4, 8 and 13. As is the case for 𝑚 = 1 and 𝑚 = 3, we see substantial
hanges in amplitude over the course of the observations. Although the
verage amplitude is ∼8 km over the period 2005–2017 (see Table 2),
t reached a minimum of ∼2.9 km in 2009 and a maximum of ∼14 km
n 2017, without any clear periodicity.

A libration frequency scan suggested a dominant frequency 𝛺𝐿 ≃
.17◦ d−1, corresponding to a period of ∼5.8 yr, with an amplitude of
3 km, but a fit with such a single term was again rather unsatisfactory.
subsequent frequency scan of the radius residuals after inclusion

f the single libration revealed a statistically significant additional
omponent. A greatly improved fit to the observed amplitudes and
hases was obtained with the resulting two-term libration model, as
hown in Fig. 17. Table 3 includes the final values for all three 𝑚 = 4

omponents in our adopted fit, with amplitudes of 𝑎𝑒0 = 7.32 ± 0.47
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a

Fig. 11. Variation in the amplitude 𝐴1 and phase 𝜙𝐿 of the 𝑚 = 1 mode over time
incorporating two libration terms with periods of 8.0 and 5.9 yr and amplitudes of
4.4 and 2.8 km, respectively. The model curves match the fitted values for the mode
amplitude and libration phase obtained from fits to selected time intervals shown in
Fig. 8 over the full span of the observations, although extending these periodic terms
into the unobserved past or future is probably unwarranted.

km, 𝑎𝑒1 = 2.79 ± 0.47 km, and 𝑎𝑒2 = 2.56 ± 0.45 km. The final libration
frequencies are 𝛺𝐿,1 = −0.2032 ± 0.0092◦ d−1 and 𝛺𝐿,2 = 0.1676 ±
0.0095◦ d−1.

6.5. The m=5 pattern

Finally we have Fig. 18, which shows the scan for the 𝑚 = 5
mode, whose predicted pattern speed at the edge of the B ring is
𝛺𝑃 = 608.025◦ d−1. Again we see a single strong peak in amplitude
at 𝛺𝑝 = 608.206◦ d−1, slightly faster than the predicted value. The
corresponding resonance radius is ∼117,547 km, or 23 km interior to
the mean radius of the ring edge. This is a relatively weak mode, with
an average amplitude of about 6 km, but varying between about 4 and
8 km, as shown in Fig. 19. There appear to be at least three amplitude
minima within the period of Cassini observations, in 2005, 2008 and
2016/17, suggesting a fairly short libration period.

A libration frequency scan revealed a single best-fitting value of
𝛺𝐿 ≃ 0.44◦ d−1, corresponding to a period of 2.25 yr, a result that was
borne out by a least-squares fit with a single libration term. Fig. 20
shows the resulting model amplitude and phase variations over time.
Although the relatively rapid libration is less well-sampled by the
eight snapshots in Fig. 19 than one would like, the model does fit the
observations reasonably well. Our final model in Table 3 has 𝑚 = 5
12
Fig. 12. A scan in pattern speed for 𝑚 = 3 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here the maximum
power is seen at one frequency, at 507.7189◦ d−1, with a radial amplitude of 9.5 km
nd a minimum 𝜎 = 5.6 km, but there are two substantial secondary peaks at slightly

lower frequencies.

amplitudes of 𝑎𝑒0 = 5.42 ± 0.44 km and 𝑎𝑒1 = 1.55 ± 0.44 km, with a
libration frequency 𝛺𝐿 = 0.4353 ± 0.0116◦ d−1.

6.6. Summary of libration models

Table 3 summarizes all the parameters for our final multi-mode fit
to the B ring edge, including the libration terms. For each value of 𝑚 we
list the basic mode parameters 𝑎𝑒0, 𝛺𝑃 and 𝛿𝑚, and for each libration
we list 𝑎𝑒𝑗 , 𝛺𝐿,𝑗 and 𝛿𝐿,𝑗 , as well as the libration period 𝑃𝐿,𝑗 . (Recall
that for librating modes the overall amplitude 𝐴𝑚 = 𝑎𝑒 is not constant,
but given by Eqs. (4) and (5) or (8).)

The rms residual per degree of freedom of the fit is 4.7 km, a
significant improvement over the 7.0 km in the reference fit in Table 2
and the 7.8 km achieved by Fit 11 of Nicholson et al. (2014a). This
improvement primarily reflects the addition of libration terms for the
modes with 𝑚 = 1, 3, 4 and 5. Fig. 21 shows a histogram of the post-fit
residuals in radius, compared to a Gaussian distribution with a standard
deviation of 4.7 km. The 11 points with residuals >20 km (i.e., >4𝜎) are
listed in Table 1 and were excluded from the fit.

Compared with the reference fit, which uses the same data set, the
amplitude, phase and pattern speed of the forced mode due to the
Mimas 2:1 ILR are all unchanged, within their stated uncertainties. Our
final fit has slightly smaller primary amplitudes for the free 𝑚 = 2, 4 and
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Fig. 13. Radius residuals from our final B ring model when the 𝑚 = 3 terms are set to zero, plotted as a function of 𝑚𝜃, where 𝛺𝑃 = 507.71325◦ d−1. The upper left panel shows the
full set of observations, with their substantial scatter. The observations are divided into eight different time intervals in the remaining panels, which show substantial systematic
variations in the amplitude and phase of the 𝑚 = 3 pattern over time. The amplitude decreased sharply between 2005 and 2010, remained fairly constant through 2013 and rose
again in 2016 and 2017, though remaining well below the level of the earliest observations. See text for details of the model fit results included in these panels.
5 modes, and slightly larger amplitudes for the 𝑚 = 1 and 𝑚 = 3 modes.
The pattern speeds of the free modes are also statistically unchanged,
with the exception of the 𝑚 = 3 mode for which 𝛺𝑃 has decreased by
0.0052 ± 0.0008◦ d−1.

Libration periods range from 2.25 yr for the 𝑚 = 5 mode to
∼20 yr for the 𝑚 = 3 mode, but most are in the range of 5–9 yrs.
Two of the fitted libration frequencies are negative, meaning that the
corresponding eccentricity vectors rotate clockwise in the [ℎ, 𝑘] plane,
opposite to the direction of 𝛺𝑃 , and that as a result 𝛺1 < 𝛺0.

Fig. 22 shows the mode amplitudes (𝑎𝑒0 and 𝑎𝑒𝑗), grouped by the
value of 𝑚. For 𝑚 = 2, the free eccentricity is larger than the forced,
implying that the overall 𝑚 = 2 pattern circulates, rather than librates,
with respect to the mean longitude of Mimas. With the exception of the
𝑚 = 2 mode, the primary mode amplitudes range from 24 to 5 km while
the libration amplitudes lie in the range 2–7 km. Although the primary
mode amplitudes generally decrease with increasing 𝑚, the latter show
no obvious pattern.

Finally, we remind the reader that the relatively long libration
periods – in some cases comparable to, or even longer than, the time
span of the Cassini data – argue for caution in their interpretation. In
particular, it is unclear whether the amplitude variations in the modes
are truly periodic, or are instead more irregular in nature.

7. Discussion

7.1. The resonant cavity model and B ring surface mass densities

The most surprising result to emerge from the present study is the
apparent libration exhibited by all of the normal modes identified at
13
the outer edge of the B ring, as summarized in Table 3 and Fig. 22.
As discussed briefly in Section 2, our model for a librating streamline
admits at least two distinct dynamical interpretations: one in which
a single mode oscillates in amplitude and phase, and the other in
which two or more stable modes with the same value of 𝑚 and similar
pattern speeds interfere to produce a beating pattern. (A third possible
interpretation is that this is the outcome of nonlinear and non-resonant
coupling between multiple modes with different values of 𝑚, and will
be briefly discussed at the end of this section.) An example of the first
case is a normal mode whose amplitude and phase vary due to a viscous
overstability, as originally envisioned by Borderies et al. (1985). In the
second case, a ring might support two or more independent edge modes
with the same 𝑚 but different numbers of radial nodes 𝑛𝑟, and thus
slightly different pattern speeds (Longaretti, 2018). These very similar
modes can then beat against one another to produce the appearance of
a single mode with a variable amplitude.

As we noted in Section 2, these two situations are indistinguishable
when only the shape of a single ring streamline – such as a ring
edge – is known, without any information on the radial variation in
ring eccentricity. But it might be possible, at least in principle, to use
radial optical depth or brightness profiles interior to the ring edge to
sort out which of these alternative hypotheses better fits the actual
rings, perhaps by identifying radial nodes due to beating between
multiple modes. In fact, this region was examined briefly by Hedman
and Nicholson (2019) in their study of axisymmetric features in the
rings, who found that while the overall structure within ∼500 km of
the B ring edge seems to be dominated by perturbations with 𝑚 = 1 –

presumably due to the edge mode studied in the present paper – there is
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Table 3
Multi-mode fit to Cassini data.

Parameter Symbol Value

mean radius 𝑎(km) 117570.48 ± 0.29
Epoch UTC 2008 Jan 1 12:00
RMS residual 𝜎(km) 4.71
# data N 294
Fit ID Sa025S-Bring-final_20220111a

Symbol 𝑚
1 2 3 4 5

𝑎𝑒 (km) 23.56 ± 0.51 33.61 ± 0.45 11.19 ± 0.53 7.32 ± 0.47 5.42 ± 0.44
𝛺𝑃 (◦ d−1) 5.0824 ± 0.0012 381.98441 ± 0.00031 507.71325 ± 0.00070 570.52829 ± 0.00084 608.20674 ± 0.00065
𝛿(◦) 64.21 ± 1.87 165.99 ± 0.51 31.00 ± 1.01 9.62 ± 1.34 68.20 ± 1.28
𝛥𝑎res (km) −151.03 ± 7.74 −14.70 ± 0.06 −28.14 ± 0.11 −25.93 ± 0.11 −23.47 ± 0.08

𝑎𝑒1 (km) 4.42 ± 0.63 37.59 ± 0.46 7.41 ± 0.64 2.79 ± 0.47 1.55 ± 0.44
𝛺𝐿,1(◦ d−1) 0.1145 ± 0.0096 0.1838 ± 0.0006 [ −0.05 ] −0.2032 ± 0.0092 0.4353 ± 0.0116
𝑃𝐿,1 (yr) 8.609 ± 0.718 5.362 ± 0.017 [ 19.713 ] 4.851 ± −0.219 2.264 ± 0.060
𝛿𝐿,1(◦) 193.60 ± 22.47 96.11 ± 1.37 90.97 ± 3.66 57.75 ± 14.00 161.40 ± 23.41

𝑎𝑒2 (km) 2.84 ± 0.53 2.15 ± 0.49 2.56 ± 0.45
𝛺𝐿,2(◦ d−1) 0.1671 ± 0.0150 0.1342 ± 0.0086 0.1676 ± 0.0095
𝑃𝐿,2 (yr) 5.900 ± 0.529 7.347 ± 0.470 5.881 ± 0.332
𝛿𝐿,2(◦) 350.70 ± 34.50 247.25 ± 17.50 217.29 ± 13.08

Note: Subscripts 1 or 2 indicate libration terms. Values in square brackets [...] were held fixed.
a

Fig. 14. Variation in the amplitude 𝐴3 and phase 𝜙𝐿 of the 𝑚 = 3 mode over time
incorporating two libration terms with periods of 19.7 and 7.3 yr and amplitudes of
7.4 and 2.2 km, respectively. The model curves match the fitted values for the mode
amplitude and libration phase obtained from fits to selected time intervals shown in
Fig. 13 over the full span of the observations, although the unusually long period of
the first libration is not tightly constrained by the observations.
14
Fig. 15. A scan in pattern speed for 𝑚 = 4 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here the maximum
power is seen at one frequency, at 570.529◦ d−1, with a radial amplitude of 7.7 km and

minimum 𝜎 = 5.2 km.
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Fig. 16. Radius residuals from our final B ring model when the 𝑚 = 4 terms are set to zero, plotted as a function of 𝑚𝜃, where 𝛺𝑃 = 570.52829◦ d−1. The upper left panel shows
he full set of observations, with their scatter. The observations are divided into eight different time intervals in the remaining panels, which show substantial variations in the
mplitude and phase of the 𝑚 = 4 pattern over time, with the amplitude decreasing to below 3 km in 2009 and then rising to above 14 km in 2017. See text for details of the
odel fit results included in these panels.
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lso evidence in some imaging mosaics for a density wave with 𝑚 = 0
ropagating inwards from the ring edge, at least in the radial range
77,220–117,400 km. However, the complexity and time-variability
f this region, combined with the large-amplitude radial perturbations
ithin ∼100 km of the ring edge due to the librating 𝑚 = 2 mode,
ave so far defeated efforts at unraveling all of these superimposed
tructures. It is likely that a full analysis will require simultaneous
odeling of the Cassini imaging and occultation data, something that

s beyond the scope of the current work.
So in the spirit of hypothesis testing, and because it is the more

usceptible to the simple kinematic modeling adopted in Section 2, we
ill assume here that the second, multi-mode interpretation is correct.
ccording to the edge-mode model, as outlined by Spitale and Porco

2010) and French et al. (2016) and reviewed by Nicholson et al.
2018), a normal mode at the edge of a ring with a specified pattern
peed 𝛺𝑃 can be viewed as a pair of free density waves trapped in
resonant cavity between the radius of the corresponding Lindblad

esonance 𝑎res (where Eq. (2) is satisfied) and the edge of the ring. For
n outer ring edge, an 𝑚-armed trailing spiral density wave is generated
t the ILR, propagates outwards until it encounters the outer edge of
he ring (or the inner edge of a gap), and then reflects as an inward-
ropagating leading wave. This wave then reflects at the ILR to produce
n outward-propagating trailing wave, thus completing the cycle. The
ngular frequency of the wave 𝜔 = 𝑚𝛺𝑃 is determined indirectly via the
ensity wave dispersion relation 𝜔(𝑘) and the requirement that the total
hange in phase around each cycle of the cavity is zero or a multiple
f 2𝜋.

Under the assumption that each of the libration terms we have
dentified above is in fact due to beating between a primary normal
15

b

ode, with pattern speed 𝛺𝑃 , and a secondary mode with pattern speed
𝑃 ,𝑗 , then from Eq. (7) above we have

𝑃 ,𝑗 = 𝛺𝑃 +𝛺𝐿,𝑗∕𝑚, (13)

where 𝛺𝐿,𝑗 is the fitted libration frequency. (The subscript 𝑗 allows for
the possibility of more than one libration term for a particular value
of 𝑚, each of which represents a new pattern speed 𝛺𝑃 ,𝑗 .) Note that
if 𝛺𝐿,𝑗 < 0, then 𝛺𝑃 ,𝑗 < 𝛺𝑃 and the resonant radius of the secondary
mode is external to that corresponding to 𝛺𝑃 . We can then calculate
the resonance radii 𝑎res of these putative secondary normal modes from
their pattern speeds via Eq. (2), as usual, and thus their distances 𝛥𝑎res
from the edge of the B ring, assumed to be at 117,570.48 km. The
results of this calculation, based on the libration frequencies given in
Table 3, are plotted in Fig. 23.

Given 𝛥𝑎res, the average surface mass density in the resonant cavity
𝛴 can be estimated using the WKB expression for the wavelength of
density waves in the vicinity of a Lindblad resonance, leading to the
approximate expression (see Section 6.3 of Nicholson et al., 2014a):

𝛴 =
[

3(𝑚 − 1) + 21
2
𝐽2(𝑅∕𝑎res)2

] 𝑀𝑃𝛥𝑎2res
8𝜋2𝛤𝑎4res

, (14)

here 𝑀𝑃 , 𝑅 and 𝐽2 are the mass, equatorial radius and second zonal
ravity harmonic of Saturn. Note that, for a given surface mass density
, 𝛥𝑎res decreases monotonically for larger values of 𝑚 but increases

or larger values of 𝑛𝑟.
The numerical factor 𝛤 specifies the number of density wavelengths

etween the resonant radius and the edge of the ring, where the wave
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Fig. 17. Variation in the amplitude 𝐴4 and phase 𝜙𝐿 of the 𝑚 = 4 mode over time
incorporating two libration terms with periods of 4.9 and 5.9 yr and amplitudes of
2.8 and 2.6 km, respectively. The model curves match the fitted values for the mode
amplitude and libration phase obtained from fits to selected time intervals shown in
Fig. 16 reasonably well.

is reflected. A reasonable approximation is to set

𝛤 = 𝑛𝑟∕2 + 𝛤0, (15)

where 𝑛𝑟 is the number of radial nodes of the mode between 𝑎res and the
edge of the ring and the constant term 𝛤0 ≃ 1∕8 (S. Tremaine, personal
communication). Note that this implies that the total phase shift around
one circuit of the cavity is then 4𝜋𝛤 = 2𝜋𝑛𝑟 + 𝜋∕2 plus that due to
the ILR reflection. Numerical solutions of the nonlinear wave equation
by Longaretti (2023) show that 𝛤 may in fact be closer to 1∕16 for an
solated nodeless mode, but that inter-mode interactions may lead to
n effective value closer to 1∕8 for 𝑚 ≠ 1. For 𝑚 = 1, on the other
and, such nonlinear interactions are negligible and a value of 1∕16 is

probably more appropriate. For 𝑚 ≠ 1, then, we assume 𝛤 = 1∕8 for the
odeless mode while 𝛤 = 5∕8 for 𝑛𝑟 = 1, and 𝛤 = 9∕8 for 𝑛𝑟 = 2, etc.
or 𝑚 = 1, the corresponding sequence is 𝛤 = 1∕16, 5∕16, 9∕16, etc.

In order to identify the appropriate value of 𝑛𝑟, and thus 𝛤 , for each
ode, we follow Longaretti (2023) and make the simple assumption7

hat, for each value of 𝑚, the mode with the smallest value of 𝛥𝑎res

7 This assumption is consistent with our interpretation here that all identi-
ied librations actually represent trapped edge modes with different numbers
f radial nodes.
16
Fig. 18. A scan in pattern speed for 𝑚 = 5 normal modes, after removing the signatures
of all other modes listed in Table 2. The format is the same as Fig. 3. Here the maximum
power is seen at one frequency, at 608.21◦ d−1, with a radial amplitude of 5.4 km and
a minimum 𝜎 = 4.5 km.

(i.e., the one whose resonant radius is nearest to the outer edge of the
B ring) corresponds to 𝑛𝑟 = 0, with larger values of 𝛥𝑎res being assigned
values of 𝑛𝑟 = 1, 2, etc. Eq. (14) is then used to estimate the average
surface mass density within the corresponding resonant cavity, with the
results listed in Table 4. We list here the 𝑚-values, the assumed number
of radial nodes 𝑛𝑟, amplitudes, pattern speeds, resonance radii, and
implied surface mass densities 𝛴 for all the normal modes identified in
this way. The index 𝑗 = 0, 1,… ranks the modes for each wavenumber in
order of decreasing fitted amplitude, with the largest amplitude mode
corresponding to 𝑗 = 0. For the nodeless modes with 𝑚 > 1, we find that
the data are fairly well fitted with 𝛴 ≃ 100 g cm−2, as indicated by the
black curve in Fig. 23. (Note that if we were to assume that 𝛤0 = 1∕16
then this estimate would be doubled to ∼200 g cm−2.) The anomalously
large value of 𝛴 in Table 4 for 𝑚 = 5 and 𝑛𝑟 = 0 might be explained if
the nodeless mode is too weak to detect and the correct identification
here is 𝑛𝑟 = 1, for which we would obtain 𝛴 ≃ 40 g cm−2. Of course,
such a solution implies that many possible modes are too weak to be
detected. We will come back to this point shortly.

As discussed in more detail by Longaretti (2023), however, several
features of these results suggest that our hypothesis that the observed
librations are due to multiple normal modes with the same value of 𝑚
but varying numbers of radial nodes 𝑛𝑟 may be incorrect, at least for
𝑚 ≠ 1. First is the large scatter in the derived surface mass densities
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Fig. 19. Radius residuals from our final B ring model when the 𝑚 = 5 terms are set to zero, plotted as a function of 𝑚𝜃, where 𝛺𝑃 = 608.20674◦ d−1. The upper left panel shows
he full set of observations. The observations are divided into eight different time intervals in the remaining panels, which show modest variations in the amplitude and phase of
he 𝑚 = 5 pattern over time. See text for details of the model fit results included in these panels.
Table 4
Normal mode cavities and B ring surface densities.

Mode 𝑛𝑟a 𝑗 𝐴𝑚 𝛺𝐿,𝑗 𝛺𝑃 ,𝑗
b 𝑎resc 𝛥𝑎resd 𝛴e 𝛤

𝑚 (km) (◦ d−1) (◦ d−1) (km) (km) (g cm−2)

1 0 0 23.56 5.0824 117419.9 −150.6 61.9 1/16
1 1 4.42 0.1145 5.1969 116691.6 −878.9 432.2 5/16
2 2 2.84 0.1671 5.2495 116364.0 −1206.5 457.5 9/16

2 0 1 37.59 0.1838 382.0763 117537.2 −33.3 101.9 1/8

3 0 1 7.41 −0.0500 507.6966 117544.9 −25.6 119.5 1/8
1 0 11.19 507.7133 117542.3 −28.1 28.9 5/8
2 2 2.15 0.1342 507.7580 117535.5 −35.0 24.8 9/8

4 0 1 2.79 −0.2032 570.4775 117551.5 −19.0 98.7 1/8
1 0 7.32 570.5283 117544.5 −25.9 36.7 5/8
2 2 2.56 0.1676 570.5702 117538.8 −31.7 30.4 9/8

5 0 0 5.42 608.2067 117547.0 −23.5 200.3 1/8
1 1 1.55 0.4353 608.2938 117535.9 −34.6 87.1 5/8

aNumber of radial nodes.
bFitted pattern speed: 𝛺𝑃 for 𝑛𝑟 = 0 mode and 𝛺𝑚 = 𝛺𝑃 +𝛺𝐿,𝑗∕𝑚 for libration components (see Table 3).
cCalculated resonance radius.
dCavity width, based on a mean edge radius of 𝑎𝐵 = 117570.48 km.
eRing surface density (see text).
within 40 km of the ring edge, ranging from ∼25 to over 100 g cm−2.8
This scatter might be explained, at least in part, by a rapid increase in

8 These estimates may be compared with the surface mass density in the
uter B ring obtained by Hedman and Nicholson (2016) of ∼120–140 g cm−2,

from the Janus 3:2 resonance near 116,100 km, and the Lissauer et al. (1985)
result of 54 g cm−2 from the Mimas 4:2 bending wave near 116,500 km,
17
surface density within 20–30 km of the ring edge, where most of the
very large values of 𝛴 occur, but upon closer inspection this does not
seem entirely satisfactory, as very different values are found for similar
values of 𝛥𝑎res. In the case of the 𝑚 = 1 mode, on the other hand, the

although we note that both results apply to regions 1000–1500 km interior
to the ring edge, well inside the region occupied by the normal mode cavities.
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Fig. 20. The modeled variation in the 𝑚 = 5 amplitude 𝐴5 and phase 𝜙𝐿, along with
fitted values over selected intervals from Fig. 19. The single libration period is 2.26 yr
and the amplitude is 1.6 km.

very large values of 𝛴 obtained for the secondary modes might be due
to our assumption that 𝑛𝑟 = 1 and 2. In fact, Longaretti (2023) finds
that values of 𝑛𝑟 = 5 and 10 provide a more consistent fit to these
two modes with an assumed surface density far from the ring edge of
𝛴 = 60 g cm−2.

A more serious problem is the very close spacing between modes
with different numbers of radial nodes, except for 𝑚 = 1, which is
much less than would be expected from Eq. (14) and 𝛴 ≃ 100 g cm−2

(cf. the red and blue curves in Fig. 23). Here, choosing larger values of
𝑛𝑟 for the secondary modes would just make the problem worse. We
have found no plausible solution to this quandary, unless all of the
modes with 𝑚 ≠ 1 that we have identified have values of 𝑛𝑟 ≫ 1.
But in this case, we would need to account for the apparent lack
of modes with smaller numbers of radial nodes, which numerical
simulations (Longaretti, 2023) suggest should have larger amplitudes.

This brings us to our third concern, which is that numerical mod-
els (Longaretti, 2018, 2023) indicate that the secondary mode am-
plitudes should decrease with increasing numbers of radial nodes,
or resonant distance from the ring edge, assuming they have similar
values of the maximum dimensionless eccentricity gradient. This is
inconsistent with our radial node assignments for 𝑚 = 3 and 𝑚 = 4,
although it is possible that inter-mode coupling via the ring’s self-
gravity could induce oscillations in their amplitudes, resulting in some
modes being unusually weak at certain times (Longaretti, 2023).

Summing up the above discussion, it appears that most of the
18

features tentatively identified as nodeless modes in Table 4 can indeed
be interpreted as actual trapped edge modes. In particular, for 𝑚 ≠ 1
their resonant cavity size is consistent with a surface mass density close
to the ring edge of ∼ 100 g cm−2, except possibly for 𝑚 = 5. The 𝑚 = 1
mode, on the other hand, probes the region further from the edge (up
to several hundreds of km rather than a few tens of km) and yields a
significantly lower mean surface density of ∼ 60 g cm−2, more in line
with previous estimates for the B ring derived from density and bending
waves. But we note that this difference in surface density does not seem
to be mirrored by a similar difference in normal optical depth, although
it is consistent with the large variations in ring opacity (𝜏∕𝛴) at optical
depths of order unity found by Hedman and Nicholson (2016).

This leaves open the nature of the 𝑚 ≠ 1 mode librations. Two
alternative options are discussed in detail by Longaretti (2023). In brief,
the first is that the various oscillations associated with a given 𝑚 are
in fact overstable librations of the nodeless mode. Alternatively, the
oscillations may result from nonlinear non-resonant couplings between
the nodeless trapped modes (and possibly other modes with amplitudes
too small to have been detected in the data so far). In this regard, the
similarity of the libration frequencies 𝛺𝐿,2 for 𝑚 = 1 (0.1671◦ d−1) and
= 4 (0.1676◦ d−1) to each other, and not far from 𝛺𝐿,0 = 0.1838◦ d−1,
ay be indications of such cross-coupling between modes of different
avenumbers.

We close this section with a few words about the 𝑚 = 2 mode
orced by Mimas. The resonant cavity depth of this mode results from
he edge confinement (or torque balance) requirement, and cannot be
sed to constrain the surface density of the ring as was done above
or the free modes. However, the amplitude of this forced mode is
etermined by a combination of the forcing by Mimas and the ring
urface density, which together can be used to derive an independent
onstraint on the ring’s surface mass density close to the edge (within,
ay, 10–20 km). This leads to a surface density estimate of ∼220 g cm−2

hen neglecting the presence of other modes, or about half that value
hen these additional modes are taken into account (see Longaretti
023 for details). This result is in reasonable agreement with that
erived from the analysis of the free nodeless trapped modes described
bove.

.2. The phase offset relative to Mimas and the B ring’s viscosity

In our reference fit to the Cassini data set in Table 2, the first
= 2 component represents the forced perturbation due to the Mimas

:1 ILR. This part of the overall model thus contains the primary
nformation on the response of the streamlines at the edge of the B
ing to the forcing by the resonance, including any offset in the phase
f the response relative to the forcing function. The latter is a predicted
onsequence of collisional dissipation within the ring, and the size of
he phase lag is related to the effective viscosity of the rings (Borderies
t al., 1982). Moreover, the amplitude of the torque exerted by Mimas
n the rings due to the 2:1 resonance is also dependent on this phase
ag (Tajeddine et al., 2017; Longaretti, 2018). Previous investigations
ave yielded somewhat inconsistent results on the phase lag at the
dge of the B ring, ranging from 2.9 ± 0.3◦ (Spitale and Porco, 2010)
o 0.7 ± 1.1◦ in longitude (Nicholson et al., 2014a). In both cases, one
f the two minima in ring radius was found to lag behind the mean
ongitude of Mimas at the epoch of the fit. In this section we compare
oth the pattern speed and phase of the 𝑚 = 2 forced perturbation to
revious results and to that expected from dynamical theory.

We first compare the measured pattern speed of the forced compo-
ent of the 𝑚 = 2 mode with the mean angular velocity of Mimas, as
hese are expected to be equal (Goldreich and Tremaine, 1978; Porco
t al., 1984). The upper panel of Fig. 24 compares the best-fitting
attern speed 𝛺𝑃 = 381.98430 ± 0.00045◦ d−1 of this mode from our
eference fit in Table 2 with the actual mean motion of Mimas during
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Fig. 21. Histogram of residuals to the final fit, overplotted with a normal distribution with 𝜎 = 4.7 km. The 11 outlier points with |𝑑𝑟| > 20 km were zero-weighted in the fit.
Fig. 22. Histogram of fitted normal modes. Red bars represent the principal mode amplitudes 𝑎𝑒0, while blue bars show the amplitudes of the libration terms 𝑎𝑒𝑗 . Note that for
𝑚 = 2, 𝑎𝑒1 is larger than 𝑎𝑒0, the resonantly-forced mode, indicating that the mode is circulating, rather than librating, with respect to Mimas. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
the period of the Cassini mission, obtained by evaluating the epicyclic
orbital elements for the numerical ephemeris, SAT441 (Acton, 1996).9

Complicating this comparison is the fact that Mimas itself is in a
4:2 inclination resonance with the satellite Tethys, which leads to long-
term periodic variations in the former’s longitude, and thus in its mean
motion. The libration period of the Mimas–Tethys resonance is 𝑃𝐿 =
70.8 yr and the corresponding variations in Mimas’s mean longitude
have an amplitude of 𝛩𝐿 = 43.7◦ (Harper and Taylor, 1993). As a result,
the satellite’s mean motion varies periodically by up to 2𝜋𝛩𝐿∕𝑃𝐿 =
0.0106◦ d−1. The long-term average value of 𝑛Mimas is 381.994509◦ d−1,
but in the early part of the Cassini mission it was ∼381.9835◦ d−1, near
its minimum value (Nicholson et al., 2014a). The long-term trend in
Mimas’s mean motion seen in Fig. 24 is a consequence of this slow
variation. In addition to the long-term trend, there is a shorter-term
variation in the epicyclic mean motion with a period of 0.62 yr and an
amplitude of ±0.005◦ d−1 that is associated with the nearby 2:1 Lindblad
resonance with Tethys (Vienne and Duriez, 1995). These variations in

9 The epicyclic elements are analogous to the usual osculating Keplerian
orbital elements, but take into account the zonal gravity coefficients of the
planet (𝐽2, 𝐽4, etc.) that have the effect of modifying Kepler’s third law and
introducing precession of both the apsidal line and the nodes of eccentric or
inclined orbits. See Borderies-Rappaport and Longaretti (1994) and Renner and
Sicardy (2006) for further details and conversion formulae from osculating to
epicyclic elements.
19
the mean motion of Mimas make an instantaneous comparison with
the fitted pattern speed of the forced 𝑚 = 2 perturbation rather tricky,
but Fig. 24 shows that the best-fitting pattern speed is indeed very
close to the average mean motion of Mimas during the period of our
observations.

Having established that the forced 𝑚 = 2 mode closely tracks the
average mean motion of Mimas, the next step is to measure the offset
in phase between the radial minimum of the mode and the average
longitude of Mimas. This is also complicated by the effects of the
Mimas–Tethys resonance. We make the working assumption that the
ring is able to follow the slow librational motion of Mimas’s longitude,
but not the short-period variations in its true or instantaneous longi-
tude. Our approach therefore is to remove the short-period variations
by subtracting from the epicyclic mean longitude a linear term with
a rate of 381.9842959◦ d−1, as determined from our reference fit in
Table 2. The lower panel in Fig. 24 compares the fitted phase of the
forced 𝑚 = 2 mode, which uses this same pattern speed, with Mimas’s
detrended orbital longitude from the numerical ephemeris. In addition,
a constant offset equal to Mimas’s epicyclic mean longitude at our
reference time of 2008 Jan 1 12:00 UTC, or 347.21996◦, has been
subtracted from both the Mimas longitudes and the fitted 𝑚 = 2 phase.
The short vertical line marks this epoch. By construction, the detrended
Mimas mean longitude is exactly zero at our reference time, although
the long-period resonant variations are still apparent, especially after
2015. The best-fitting value of the phase lag from the reference fit in
Table 2 is −0.39 ± 0.73◦ relative to the epicyclic longitude of Mimas at



Icarus 405 (2023) 115678R.G. French et al.

t
l
r
i

t
i
w
a
b
t

c
t
l
t
w
e
a
−
a
a
𝑚
d
m
t
a
m
a
o

t
u
o
6
i
t
f
2

Fig. 23. The locations of the calculated resonance radii 𝑎res for normal modes with 𝑚 = 2, 3, 4 and 5 relative to the mean radius of the outer edge of the B ring, on the assumption
that the fitted mode librations represent beating between normal modes with different numbers of radial nodes 𝑛𝑟. Free modes are plotted as filled circles; the open circle marks
the 𝑚 = 2 mode forced by Mimas. The amplitude of each fitted mode (in km) is listed next to each point. The black curve shows the predicted value of 𝛥𝑎res as a function of 𝑚 for
nodeless modes (i.e., those with 𝑛𝑟 = 0), a surface mass density 𝛴 = 100 g cm−2 and 𝛤 = 1∕8 (see text). The gray shaded region bounds the range 𝛴 = 80–120 g cm−2, from right
o left. The red and blue curves show the corresponding values of 𝛥𝑎res predicted for normal modes with 𝑛𝑟 = 1 and 2, respectively. With the exception of 𝑚 = 1 and 𝑚 = 5, the
owest-frequency mode for each value of 𝑚 is roughly consistent with 𝛴 ≃ 100 g cm−2. (For the primary 𝑚 = 1 mode, 𝛥𝑎res = −150.6 km and is off-scale, reflecting the much longer
adial wavelengths of the associated density waves.) For comparison, the estimates of 𝛥𝑎res for these same modes from Nicholson et al. (2014a) are shown by the + symbols. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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he reference time, as shown by the horizontal blue line in Fig. 24. If
nstead we use our final fit from Table 3, for which 𝛿 = 346.10 ± 0.59◦,
e find an offset of −1.12 ± 0.59◦ relative to Mimas. These results
re consistent with the less-precise phase lag of −0.7 ± 1.1◦ found
y Nicholson et al. (2014a), but somewhat smaller in magnitude than
hat obtained by Spitale and Porco (2010), viz. −2.3 ± 0.3◦.

Given the departures of Mimas’s epicyclic longitude from any
onstant-rate model, one might ask if there is a better way to measure
he true phase offset. One alternative is to use the actual epicyclic mean
ongitude of Mimas in the orbit fitting program, instead of the linear
erm in Eq. (1), and then solve for a constant offset with respect to this,
hich we refer to as 𝛿𝜆 — this was the approach followed by Nicholson
t al. (2014a). We have repeated both our reference fit in Table 2
nd our final fit (Table 3) with this modification. We find that 𝛿𝜆 =
0.51±0.56◦ and −1.28±0.38◦, respectively. Within their uncertainties,
ll four estimates of the phase lag are reasonably consistent and imply
small negative offset in the longitude of one minimum of the forced
= 2 mode relative to the mean epicyclic longitude of Mimas. As

iscussed in Nicholson et al. (2023), such a phase lag in the radial
inimum is consistent with a gravitational torque between Mimas and

he rings that acts to remove excess angular momentum from the B ring
nd transfers it to the satellite. But we must caution the reader that the
easured phase lag is only barely statistically significant, and might

lso be subject to significant temporal variations associated with the
bserved mode librations (Longaretti, 2018).

The present and previously published estimates of the phase lag of
he forced 𝑚 = 2 mode with respect to Mimas’s mean longitude can be
sed to constrain the effective viscosity within the last few tens of km
f ring’s outer edge. On the other hand, the surface mass density 𝛴 ∼
0 g cm−2 obtained from the analysis of the 𝑚 = 1 normal mode also
ndirectly constrains the ring’s viscosity under the plausible assumption
hat angular momentum transport in this wider region (up to 1000 km
rom the ring edge) is dominated by self-gravity wakes (Daisaka et al.,
001), although numerical simulations suggest that wake formation in
20
he B ring may be limited for such a low value of 𝛴 (Robbins et al.,
010). As shown in detail by Longaretti (2023), these two estimates
f the ring viscosity at different distances from the edge are consistent
ith one another, once the substantial increase in dissipation produced
y the confinement of the edge by Mimas is taken into account, leading
o a viscosity far from the ring edge of 𝜈0 ≃ 5–15 cm2 s−1.

. Conclusions and open questions

• The dominant 𝑚 = 2 mode at the outer edge of the B ring is
observed to circulate with a period of 5.36 yr and an amplitude
that varies from a minimum of 4 km to a maximum of 71 km.
Under the assumption that this is due to a combination of a
resonantly-forced perturbation by Mimas plus an 𝑚 = 2 normal
mode (Spitale and Porco, 2010; Nicholson et al., 2014a), we find
𝛥𝑎res = −14.7 km and 𝐴𝑚 = 33.6 km for the forced mode, while
𝛥𝑎res = −33.3 km and 𝐴𝑚 = 37.6 km for the free mode. The near
equality in amplitude of the two modes is intriguing. This may
simply be coincidental, but another option is that what we have
identified as a free mode is instead an overstable component of
the forced mode. The near-equality of amplitude could then be
a result of nonlinear saturation of the overstability. If this leads
to circulation instead of libration, the two amplitudes must of
necessity be nearly the same, since the mean eccentricity for such
a mode is similar to the eccentricity gradient across the resonant
cavity.

• Additional modes of radial oscillation are seen with azimuthal
wavenumbers 𝑚 = 1, 3, 4 and 5 and mean amplitudes ranging
from 5 to 24 km, interpreted here as normal modes trapped in
resonant cavities at the edge of the B ring. From their observed
pattern speeds, we calculate resonant cavity widths 𝛥𝑎res that
range from 151 km for 𝑚 = 1 to 23 km for 𝑚 = 5. A recurrent
question here, and also for the edge of the A ring (Nicholson et al.,
2023), is why we see some modes and not others. If modes are
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Fig. 24. (Upper panel) A comparison of the fitted pattern speed of the forced 𝑚 = 2
mode with the actual mean motion of Mimas obtained by evaluating the epicyclic
orbital elements from the numerical ephemeris SAT441. The horizontal lines show the
fitted pattern speed and error bars for the forced mode, 𝛺𝑃 from our reference fit in
Table 2, while the oscillatory curve is from the satellite ephemeris. (Lower panel) A
comparison of the fitted phase 𝛿 of the forced 𝑚 = 2 mode from the reference fit with
he mean longitude of Mimas at 𝑡 = 𝑡0 derived from the ephemeris. The horizontal
ine with error bars shows the mode phase relative to Mimas’s mean longitude at our
eference epoch, while the oscillatory curve is again from the satellite ephemeris. The
atter has had a linear trend removed with a slope equal to the best-fitting mode
attern speed shown in the upper panel, and both the mode phase and detrended
imas longitudes are calculated relative to the mean epicyclic longitude of Mimas at
= 𝑡0. The short vertical line marks the epoch of the fitted orbital elements, when

he measured phase lag was −0.39 ± 0.73◦. In both panels, the curves computed from
he satellite ephemeris are plotted as heavier lines during the actual period of Cassini
bservations used in the fits.

maintained by a viscous overstability, then in principle modes
with all values of 𝑚 may be excited. However, such modes will
necessarily undergo nonlinear non-resonant couplings, leading to
quasi-periodic time-variation of the mode amplitudes. They may
not have detectable amplitudes at all times, and the amplitude
distribution may well appear to be chaotic.

• It appears that the unforced modes with 𝑚 = 1, 3, 4 and 5 all
librate in amplitude and phase, and, except for 𝑚 = 5, each
mode appears to exhibit at least two libration terms. Libration
amplitudes range from 1.6 to 7.4 km and the periods 2𝜋∕𝛺𝐿 range
from 2.3 to ∼20 yr, with an average of ∼6 yr. From the shape
of the ring edge alone, we cannot discriminate between three
possible dynamical explanations for the librations: (1) true phys-
ical oscillations of the amplitudes and phases of normal modes,
possibly due to a viscous overstability; (2) apparent oscillations
due to the beating of separate normal modes with the same
21
value of 𝑚 but different numbers of radial nodes; or (3) quasi-
periodic changes in amplitude and phase on decadal timescales
as a consequence of nonlinear and non-resonant coupling between
excited modes with different values of 𝑚.

• Under the assumption that dynamical model (2) above is correct,
we use the resonant cavity widths of the various modes to esti-
mate the surface mass density 𝛴 in the outermost parts of the B
ring. For the nodeless modes (i.e., those with 𝑛𝑟 = 0) with 𝑚 ≠ 1
we find that 𝛴 ≃ 100 g cm−2, while for the 𝑚 = 1 mode – whose
cavity is much wider – we find 𝛴 ≃ 60 g cm−2. These results are
consistent with those derived previously from the few density and
bending waves identified in the B ring (Hedman and Nicholson,
2016). However, modes with non-zero numbers of radial nodes
typically yield much lower values of 25–35 g cm−2, suggesting that
a different model is necessary to account for these features.

• Given the large amplitude of the 𝑚 = 2 mode, and the resulting
substantial eccentricity gradient 𝑞 in the outer B ring, one might
expect the existence of overtone modes, with perturbations vary-
ing as an 𝑛-tuple of 𝑚[𝜆 −𝛺𝑃 (𝑡 − 𝑡0) − 𝛿]. Such distortions should
look like normal modes with 𝑚′ = 𝑛𝑚 but the same pattern speed
𝛺𝑃 . A search has not revealed any evidence for such modes with
𝑚 = 4 or 𝑚 = 6 and 𝛺𝑃 = 𝛺2.

• Despite careful searches, no additional long-lived modes have
been identified for values of 𝑚 > 5, or for negative values of
𝑚. (The latter would correspond to OLR-type modes that are not
expected to exist at outer ring edges.)

• The overall rms residual of our best fit is 4.7 km, at least 10
times larger than the uncertainties in the measured radii and
much greater than the residuals obtained for fits to other sharp-
edged features in the nearby Cassini Division (French et al.,
2016). Possible explanations range from additional unmodeled
global modes of oscillation to localized distortions such as those
seen in some ISS images (Spitale and Porco, 2010; Hedman and
Nicholson, 2019). At any given time, a number of weaker modes
may be present but with amplitudes that are too small to be in-
dividually detected. However, such modes would still contribute
to the radius residuals.

• Our analysis of the forced component of the 𝑚 = 2 mode, and that
of Spitale and Porco (2010), indicate that one minimum of the
radial pattern lags behind the mean longitude of Mimas by 1–2◦.
A more accurate estimate is made difficult by the various long-
term perturbations in the orbit of Mimas due to the 4:2 vertical
resonance with Tethys (𝑃𝐿 = 70 yr) and the nearby 2:1 Lindblad
resonance (𝑃𝐿 = 0.62 yr), but the sign of the lag is consistent
with the expectation that Mimas is removing angular momentum
from the B ring at the 2:1 resonance, and thus preventing it from
spreading due to viscous interactions.

• An analysis of the phase lag of the forced mode in a companion
paper by Longaretti (2023) yields an estimate for the kinematic
viscosity of the outer B ring, but well inside the perturbed edge,
of 𝜈0 = 5–15 cm2 s−1, compatible with the expectation that
self-gravity wakes dominate the outward transport of angular
momentum in this region.
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