
Kronoseismology. VI. Reading the Recent History of Saturn’s Gravity Field in Its Rings

M. M. Hedman1 , P. D. Nicholson2 , M. El Moutamid3 , and S. Smotherman1
1 Physics Department, University of Idaho, Moscow, ID, USA

2 Department of Astronomy, Cornell University, Ithaca, NY, USA
3 Cornell Center for Astronomy and Planetary Science, Cornell University, Ithaca, NY, USA

Received 2021 October 1; revised 2022 January 20; accepted 2022 January 20; published 2022 March 11

Abstract

Saturn’s C ring contains multiple structures that appear to be density waves driven by time-variable anomalies in
the planet’s gravitational field. Semiempirical extensions of density wave theory enable the observed wave
properties to be translated into information about how the pattern speeds and amplitudes of these gravitational
anomalies have changed over time. Combining these theoretical tools with wavelet-based analyses of data obtained
by the Visual and Infrared Mapping Spectrometer on board the Cassini spacecraft reveals a suite of structures in
Saturn’s gravity field with azimuthal wavenumber 3, rotation rates between 804° day−1 and 842° day−1, and local
gravitational potential amplitudes between 30 and 150 cm2 s−2. Some of these anomalies are transient, appearing
and disappearing over the course of a few Earth years, while others persist for decades. Most of these persistent
patterns appear to have roughly constant pattern speeds, but there is at least one structure in the planet’s
gravitational field whose rotation rate steadily increased between 1970 and 2010. This gravitational field structure
appears to induce two different asymmetries in the planet’s gravity field, one with azimuthal wavenumber 3 that
rotates at roughly 810° day−1 and another with azimuthal wavenumber 1 rotating three times faster. The
atmospheric processes responsible for generating the latter pattern may involve solar tides.

Unified Astronomy Thesaurus concepts: Saturn (1426); Planetary rings (1254); Planetary atmospheres (1244);
Planetary interior (1248); Wavelet analysis (1918); Stellar occultation (2135); Solar system gas giant planets
(1191); Celestial mechanics (211)

1. Introduction

Saturn’s rings contain multiple structures that are generated
by resonances with asymmetries and oscillations within the
planet (Hedman & Nicholson 2013, 2014; French et al.
2016, 2019; Hedman et al. 2019; French et al. 2021). Many of
these waves are likely generated by planetary normal mode
oscillations, and precise measurements of these oscillation
frequencies have already yielded new insights into Saturn’s
internal structure and rotation rate (Fuller 2014; Mankovich
et al. 2019; Mankovich & Fuller 2021). However, there is
another class of ring waves that are generated by something
happening inside Saturn, but whose exact origins are less clear.
One of these waves was first identified in Voyager radio
occultation measurements (Rosen et al. 1991), while several
others were discovered in stellar occultation data obtained by
the Ultraviolet Imaging Spectrometer (UVIS) on board the
Cassini spacecraft (Baillié et al. 2011). Most of these features
were later identified as three-armed spiral patterns with rotation
rates close to Saturn’s spin rate, using stellar occultation data
obtained by Cassini’s Visual and Infrared Mapping Spectro-
meter (VIMS; Hedman & Nicholson 2014; El Moutamid et al.
2016).4 The fact that these patterns appear to track Saturn’s
rotation strongly suggests that these features are driven by

asymmetries in the planet’s gravitational field, but how these
asymmetries are generated is still unclear.
Comparing occultation data obtained over the entire course

of the Cassini mission reveals that the wavelengths, pattern
speeds, and locations of the ring waves are actually time-
variable. This implies that the amplitudes and rotation rates of
the asymmetries inside the planet that drive these waves are
also changing over time. In this paper, we develop new
theoretical tools and wavelet-based techniques to translate the
observable ring structures into information about how the
rotation periods and amplitudes of these anomalies have
changed over the past few decades. These analyses show that
while some anomalies in the planet’s gravitational field persist
for up to 40 Earth years, others are much more transient, lasting
for less than a decade. These should provide insights into the
internal dynamics of giant planets.
The techniques we have developed to interpret these data are

somewhat complex and so require both prior motivation and
detailed explanation. Section 2 therefore provides a review of
the observational data and standard wavelet-based analytical
techniques used to identify signals from density waves. This
section also discusses how these data and tools provide
evidence that certain waves are generated by time-variable
perturbations. Section 3 then describes the phenomenological
models and analytical techniques needed to translate the
observed properties of these structures into quantitative
information about the recent history of the perturbations acting
on the ring (note that this long section will be most relevant to
those interested in how ring structures can act as historical
records of transient phenomena). Finally, Section 4 presents the
results of applying these techniques to the waves that appear to
be generated by asymmetries in the planet’s gravitational field,
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4 The one exception being the wave first noticed in the Voyager data, which is
a one-armed spiral with a rotation rate roughly three times Saturn’s spin rate.
The connection between this wave and the three-armed waves will be discussed
in more detail below.
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while Section 5 discusses the potential implications of these
findings for Saturn’s interior.

2. Background

Prior to discussing the details of the theoretical tools and
analytical techniques needed to interpret density wave signals
from time-variable perturbations, we first present some
evidence that these tools are necessary. This section therefore
starts with a brief overview of the available observational data
used in this study (Section 2.1), followed by a review of the
expected properties of standard density waves and the existing
wavelet-based techniques for isolating and quantifying these
patterns (Section 2.2). Finally, Section 2.3 shows that these
data and tools provide evidence that certain ring structures are
generated by forces with time-variable amplitudes or
frequencies.

2.1. Observational Data

As with our previous studies of wave-like patterns in
Saturn’s rings, this investigation will utilize stellar occultation
data obtained by the VIMS instrument on board the Cassini
Spacecraft (Brown et al. 2004). While VIMS normally obtained
spatially resolved spectra of various targets, this instrument
could also repeatedly measure the spectrum of a star as the
planet or its rings passed between the star and the spacecraft. In
this occultation mode, a precise time stamp was appended to
each spectrum to facilitate reconstruction of the observation
geometry.

Consistent with our previous analyses, here we will only
consider data obtained at wavelengths between 2.87 and
3.00 μm, where the rings are especially dark and so provide a
minimal background to the stellar signal. In addition, we use
information from the appropriate SPICE kernels (Acton 1996),
as well as the timing information encoded with the occultation
data, to compute both the radius and inertial longitude in
the rings that the starlight passed through. Note that the
information encoded in these kernels has been determined to be
accurate to within 1 km, and fine-scale adjustments based on
the positions of circular ring features enable these estimates to
be refined to an accuracy of order 150 m. For this analysis, we
use the latest estimates of these offsets from French et al.
(2017).

Table 1 provides a list of the occultations that will be
considered for this study, which are all the occultations with
suitable resolutions and signal-to-noise ratios that cover the
region between 83,000 and 90,000 km from Saturn’s center,
and therefore contain all the density waves that appear to be
generated by asymmetries in the planet’s gravity field, along
with a few three-armed spiral waves generated by Saturn’s
moons, which are useful bases for comparison. Note that these
observations fall into three distinct epochs: 2008–2009,
2012–2014, and 2016–2017. These three epochs are separated
by multiyear gaps where the spacecraft’s trajectory did not
allow it to observe occultations of the rings. For the following
analyses, we will analyze data from these three epochs
separately in order to document time-variable structures.

Since the VIMS instrument has a highly linear response
function (Brown et al. 2004), the raw data numbers returned by
the spacecraft are directly proportional to the apparent bright-
ness of the star. We can therefore estimate the transmission
through the rings T as simply the ratio of the observed signal at

a given radius to the average signal in regions outside the rings.
From this transmission, we can compute the ring’s optical
depth τ using the standard formula ( )t = - Tln . Both T and τ
depend on the observation geometry, but for relatively low
optical depth regions, like the middle C ring, we can define the
normal optical depth ∣ ( )∣t t= Bsinn (with B being the ring
opening angle to the star), which should be nearly independent
of B for all the occultations considered here. Note that in order
to facilitate the wavelet analysis of these profiles (which
requires combining data from multiple occultations), we
interpolate the transmission values T from each occultation
onto a regular grid of radii, with a spacing of 100 m, before
converting the resulting profiles to normal optical depth τn.

2.2. Review of Wavelet-based Tools for Analyzing Standard
Density Waves

Wavelet transformations have proven to be extremely useful
tools for characterizing the wave-like patterns in the rings (see
Tiscareno & Hedman 2018 for a recent review). This particular
analysis will build upon the wavelet-based analytical tools that
have previously been developed to identify and characterize
density waves in Saturn’s rings (Hedman&Nicholson 2014, 2016;
Hedman et al. 2019). For the sake of completeness and clarity,
this section provides a brief review of the basic properties of the
standard spiral density waves in Saturn’s rings, as well as the
wavelet-based statistics that can be used to identify and
characterize the signals associated with these waves.
A standard spiral density wave is a structure that consists of

|m| tightly wrapped arms and that rotates at a pattern speed Ωp

(Shu 1984; Nicholson et al. 1990; Tiscareno et al. 2007). These
patterns are typically generated at resonant locations rL, where
the ring particles’ orbital mean motion nL and radial epicyclic
frequency κL satisfy the following relationship:

( ) ( )k- W =m n . 1L p L

As in previous works, we allow m to be a signed quantity in
this expression, so that m> 0 means that the pattern speed is
slower than the mean motion (corresponding to an inner
Lindblad resonance or ILR), while m< 0 means that the pattern
speed is faster than the mean motion (corresponding to an outer
Lindblad resonance or OLR). These patterns produce variations
in the local surface mass density that generate variations in the
ring’s optical depth τ with radius r, longitude λ, and time t of
the following form:

[ ( ) ] ( )[ ( ) ∣ ∣( ) ]Rt t= + f l j+ -W +A r e1 , 2o
i r m tr p 0

where τ0 and j0 are constants, A(r) is a slowly varying function of
radius, and fr(r) is the radius-dependent part of the wave’s phase,
which has the following form at sufficiently large distances from
the resonant radius rL (so long as m≠ 1; Shu 1984):
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where σ0 is the ring’s surface mass density and MP is the
planet’s mass. This structure therefore has a radial wavenumber
k= |∂fr/∂r| that varies linearly with radius.
Wavelet transforms provide a way to isolate and quantify

these sorts of quasiperiodic signals. More specifically, a
wavelet transformation is applied to each occultation profile
using the IDL wavelet routine (Torrence & Compo 1998)
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Table 1
The Occultations Used in This Study

Namea Date Bb λ*
c λd Name Date Bb λ*

c λd Name Date Bb λ*
c λd

RCas065i 2008-112 56.0 222.9 37.7-40.5 betPeg172i 2012-266 31.7 212.3 309.3-311.6 alpSco241e 2016-243 −32.2 118.5 17.7-23.9
gamCru078i 2008-209 −62.3 50.7 181.2-182.1 lamVel173i 2012-292 −43.8 0.3 144.8-150.1 alpSco243e 2016-267 −32.2 118.5 16.6-22.6
gamCru079i 2008-216 −62.3 50.7 179.5-180.6 WHya179i 2013-019 −34.6 75.7 141.1-145.2 alpSco245e 2016-287 −32.2 118.5 14.9-21.5
RSCnc080i 2008-226 30.0 10.8 75.9-85.8 WHya180i 2013-033 −34.6 75.7 141.6-145.7 gamCru245e 2016-286 −62.4 50.7 265.6-276.3
RSCnc080e 2008-226 30.0 10.8 125.9-135.9 WHya181i 2013-046 −34.6 75.7 141.6-145.7 gamCru255i 2017-001 −62.4 50.7 147.0-147.3
gamCru082i 2008-238 −62.3 50.7 178.2-179.4 muCep185e 2013-090 59.9 184.5 46.4-52.6 gamCru264i 2017-066 −62.4 50.7 145.2-145.5
RSCnc085i 2008-263 30.0 10.8 79.9-93.4 WHya186e 2013-103 −34.6 75.7 296.5-297.9 lamVel268i 2017-094 −43.8 0.3 135.0-136.0
RSCnc085e 2008-263 30.0 10.8 117.9-131.4 gamCru187i 2013-112 −62.4 50.7 144.6-150.0 gamCru268i 2017-095 −62.4 50.7 144.1-144.4
gamCru086i 2008-268 −62.3 50.7 177.2-178.5 gamCru187e 2013-112 −62.4 50.7 227.3-232.7 VYCMa269i 2017-100 −23.4 337.4 197.2-203.5
RSCnc087i 2008-277 30.0 10.8 82.0-99.3 WHya189e 2013-132 −34.6 75.7 295.3-296.7 gamCru269i 2017-102 −62.4 50.7 144.0-144.3
RSCnc087e 2008-277 30.0 10.8 111.9-129.2 RCas191i 2013-149 56.0 222.9 295.3-296.5 gamCru276i 2017-148 −62.4 50.7 144.1-144.2
gamCru089i 2008-290 −62.3 50.7 177.0-178.2 muCep191i 2013-148 59.9 184.5 289.2-290.0 gamCru291i 2017-245 −62.4 50.7 130.6-130.8
gamCru093i 2008-320 −62.3 50.7 206.7-207.9 muCep193i 2013-172 59.9 184.5 289.4-290.2 gamCru292i 2017-251 −62.4 50.7 129.8-130.0
gamCru094i 2008-328 −62.3 50.7 191.7-191.8 RCas194e 2013-186 56.0 222.9 84.5-85.8
gamCru100i 2009-012 −62.3 50.7 220.7-223.4 2Cen194i 2013-189 −40.7 75.6 147.1-152.3
gamCru102i 2009-031 −62.3 50.7 220.4-223.1 2Cen194e 2013-189 −40.7 75.6 230.4-235.6
betPeg104i 2009-057 31.7 212.3 343.4-346.1 RLyr198i 2013-289 40.8 148.1 261.6-263.1
RCas106i 2009-081 56.0 222.9 71.8-83.9 RLyr199i 2013-337 40.8 148.1 230.3-235.5
alpSco115i 2009-209 −32.2 118.5 158.9-162.0 RLyr200i 2014-003 40.8 148.1 256.6-258.5

RLyr202e 2014-067 40.8 148.1 56.2-59.9
L2Pup205e 2014-175 −41.9 332.3 222.1-227.9
RLyr208e 2014-262 40.8 148.1 46.0-51.1

Notes.
a The occultation name, consisting of the star name, the Cassini orbit number, and a designation of the occultation being ingress (i) or egress (e).
b The ring opening angle to the star, in degrees.
c The inertial longitude of the star in the sky, in degrees from the ring’s ascending node on J2000.
d The observed range of inertial longitudes in the rings between 83,000 and 90,000 km, in degrees.
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with a Morlet mother wavelet and parameter ω0= 6. This
specific wavelet transformation is essentially a localized
Fourier transformation, yielding the complex wavelet
 = Fei i

i i, where  ,i i, and Φi are all functions of both
radius r and radial wavenumber k. This wavelet transform of an
individual occultation profile reveals quasi-sinusoidal patterns
associated with spiral waves as locations containing elevated
amplitudes at specific wavenumbers, with the signal from
a standard density wave appearing as a diagonal band in
plots of the wavelet amplitude versus k and r (Tiscareno &
Hedman 2018; see also Figure 11).

More importantly, wavelet transforms of multiple occulta-
tions can be combined to isolate signals from specific waves
with particular values of m and Ωp. This is accomplished by
using the observed longitude λi and observation time ti for each
occultation to compute the phase parameter fi= |m|[λi−Ωpti].
This quantity is then used to calculate the phase-corrected
wavelet:

( )( )  = =f
f f- F -e e . 4i i

i
i

i
, i i i

Note that Φi is equivalent to the phase of the sinusoidal optical
depth variations associated with a wave (see Equation (2)), so
for any wave with the specified values of |m| and Ωp, the phase
difference Φi− fi= fr(r)+ j0 for every occultation. Since this
difference should be the same for all of the occultation profiles,
the average phase-corrected wavelet

( ) åá ñ =f f
=N

1
5

i

N

i
1

,

will be nonzero for such a wave, while any signal without these
properties will average to zero. Thus, only the desired signal
should remain in the power of the average phase-corrected
wavelet

( ) ∣ ∣ ( ) å= á ñ =f f f
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while all other signals are only seen in the average wavelet
power

¯ ( ) ∣ ∣ ∣ ∣ ( ) å= á ñ =f f
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The ratio of these two powers ( ) ¯  = fr k, (which ranges
between 0 and 1; see Hedman & Nicholson 2016) therefore
provides a measure of how much of the signal is consistent
with the assumed m and Ωp. Hence, for any given value of m,
we can compute f and  for a range of pattern speeds, and
determine the true pattern speed as the one that maximizes
these statistics.

2.3. Evidence that Planet-generated Density Waves are
Generated by Time-variable Forces

Preliminary examinations of the waves generated by
asymmetries in the planet’s gravitational field provide two
lines of evidence that the forces responsible for generating
these waves are time-variable. First of all, direct comparisons
of high-quality occultation profiles obtained from the three
different parts of the Cassini Mission reveal that the strongest
waves with pattern speeds close to Saturn’s rotation rate visibly
change over timescales of a few years. Second, wavelet

analyses of these same structures reveal that they do not have
the fixed pattern speeds expected for standard density waves.
This latter aspect of these density waves can also be observed
in several weaker waves with pattern speeds close to Saturn’s
rotation rate. These variable pattern speeds are indirect
evidence for time-dependent perturbations acting on the ring,
because this behavior is inconsistent with the expected
response of the rings to a strictly periodic perturbing force.
Figure 1 shows optical depth profiles of the two waves that

were designated W84.82 and W84.86 by Hedman & Nicholson
(2014). These waves are located around 84,825 and 84,865 km
from Saturn’s center, and were found to be three-armed spirals
with pattern speeds of 833°.5 day−1 and 833°.0 day−1,
respectively, comparable to the rotation rate of Saturn’s
equatorial jet (Hedman & Nicholson 2014). Quasiperiodic
optical depth variations associated with both waves can be seen
in all three profiles, but it is also clear that over the course of
the Cassini mission, the wavelengths of both these patterns
shortened. Furthermore, the locations of the signals shift
slightly outward over time (this is clearer for the stronger
W84.82 pattern). Both these trends are in stark contrast to the
observed behavior of standard density waves generated by
most satellites or by normal modes inside the planet, which
remain at a fixed location and maintain a fixed wavelength at
any given radius.
The closest analogs to these time variations are found in the

waves generated by the co-orbital moons Janus and
Epimetheus. These two moons undergo rapid changes in
their semimajor axes and orbital periods every four years that
cause sudden changes in the locations of their resonances in
the rings. Many of the density waves generated at these
resonances show unusual morphologies that can best be
understood as superpositions of “wave fragments,” each of
which corresponds to a part of a standard density wave
generated when the resonance was at a particular location
(Tiscareno et al. 2006). According to this model, each wave
fragment is generated at a particular resonant location, and
then moves outward at the appropriate group velocity for
density perturbations in the rings (Shu 1984):

( )p s k=v G , 8g 0

where G is the universal gravitational constant, σ0 is the
background ring surface mass density, and κ is the local radial
epicyclic frequency.
W84.82 and W84.86 look like they can also be regarded as

isolated “wave fragments.” For one, they are clearly moving
outward, which is the correct direction for a wave fragment
generated by an ILR with a pattern speed slower than the local
mean motion (Shu 1984; Tiscareno et al. 2006). Furthermore,
for this part of the ring, the surface mass density was estimated
to be around 2–4 g cm−2 (Hedman & Nicholson 2014; but see
below for evidence that this was an overestimate), and κ ;
1225° day−1, so the expected group velocity should be between
0.5 and 1 km yr−1, which is roughly consistent with the
observed radial shifts of the wave locations between the
profiles shown in Figure 1, which amount to a few kilometers
over 7 yr. Furthermore, the observed decrease in wavelength
and increase in wavenumber is consistent with the expected
behavior of a wave fragment moving away from the resonant
radius (see Section 3.1).
A rather different sort of time variability is found with the

wave designated W86.40, which Hedman & Nicholson (2014)
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found was a three-armed spiral pattern with a pattern speed of
810°.4 day−1, a speed that overlaps with the rotation rates of
Saturn’s westward jets. Figure 2 shows three high-quality

profiles of this wave from the three different epochs of the
Cassini Mission. In this case, the wavelength of the pattern at
any given radius again declines over time (most obviously

Figure 1. Comparisons of three high-quality normal optical depth (τn) profiles obtained from three different times during the Cassini mission (the year and day
numbers are provided in the colored labels), focusing on the waves designated W84.82 and W84.86. In this case, the wavelengths of the wave patterns around 84,825
and 84,865 km clearly shorten over the course of the Cassini mission. The wave packet around 84,825 km also steadily moves outward over time.

Figure 2. Comparisons of three high-quality normal optical depth (τn) profiles obtained from three different times during the Cassini mission (the year and day
numbers are provided in the colored labels), focusing on the wave designated W86.40. The wavelength of this pattern around 86,410 km clearly shortens over the
course of the Cassini mission. Furthermore, the wave appears to be shifting inward over time, with the region of the highest-amplitude variations shifting from about
86,420 km to around 86,405 km during this 8 yr period.
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around 86,410 km). In addition, it appears that the wave as a
whole could be moving inward over time, because the part of
the wave with the largest-amplitude optical depth variations
shifts from around 86,420 km in 2009 to around 86,405 km
in 2016.

The behavior of W86.40 is highly reminiscent of another
wave that was previously identified as time-variable. This
wave, designated W85.67, was identified as a one-armed spiral
pattern with a pattern speed of 2430° day−1 (Hedman &
Nicholson 2014). This is the only one of these variable waves
that was also visible in the Voyager radio occultation, and
comparisons between the Voyager data and the early Cassini
data clearly showed that the wave as a whole was moving
inward over time. Figure 3 demonstrates that the inward motion
of this wave continued up through the end of the Cassini
mission (note that the inner edge of the wave gets progressively
closer to the sharp inner edge of the plateau). Hedman &
Nicholson (2014) interpreted this pattern’s evolution as
evidence that the periodic perturbation frequency responsible
for generating this wave was slowly increasing over time,
causing the resonant location to drift steadily closer to the
planet. Since W86.40 shows a similar evolution over time as
W85.67, it seems likely that the periodic force responsible for
generating this wave also has a frequency that is increasing
over time, causing the wave to steadily move inward.

While visual inspection of individual high-quality occulta-
tion profiles is sufficient to document some aspects of the
temporal variability of these waves, wavelet analysis reveals
another unusual aspect of these waves: different parts of the
waves do not have a single, constant pattern speed. This is most
easily demonstrated by considering only the data from Epoch 1
(2008–2009). This epoch contains enough occultations to

ascertain the pattern speeds of these structures, while also
covering a sufficiently short period of time that the variations in
the pattern’s wavelength do not strongly suppress the signals in
the phase-corrected average wavelet.
Figure 4 illustrates the typical behavior of most of the

density waves in the rings. The top panel shows the optical
depth profile of the wave designated W84.64 in the middle C
ring, which is generated by a planetary normal mode. The
bottom panel shows the results of a wavelet analysis of the
Epoch 1 occultations, assuming the pattern has m=−2. The
plot shows the peak value of the wavelet power ratio  for
wavelengths between 0.2 and 2 km as a function of ring radius
and assumed pattern speed. The pattern speed is expressed as
an offset from the nominal pattern speed δΩp, as well as the
corresponding offset in the resonant radius δr used to compute
that pattern speed offset (see Equation (1)). Both the nominal
pattern speed and resonant radius are given at the top of the
figure. In this specific case, the signal from the wave forms a
dark horizontal band that occupies roughly the same radial
range as the wave itself. This signal falls along the horizontal
line that corresponds to δr= δΩp= 0, which means that the
entire wave has the same pattern speed of 1860°.752 day−1.
This is consistent with the signals seen from other waves
generated by planetary normal modes and by satellites with
constant mean motions (Hedman & Nicholson 2016; French
et al. 2019; Hedman et al. 2019).
If we now turn our attention to the time-variable m= 3

waves, we find a very different behavior. To start with, Figure 5
shows a wavelet analysis of the waves W84.82 and W84.86.
These two waves produce clear signals in the wavelet
transform, and the signals from these two patterns have pattern
speeds that correspond roughly to a 30 km separation in

Figure 3. Comparisons of three high-quality normal optical depth (τn) profiles obtained from three different times during the Cassini mission (the year and day
numbers are provided in the colored labels), focusing on the wave designated W85.67. The wavelength of this pattern around 85,670 km clearly shortens over the
course of the Cassini mission. Furthermore, the wave appears to be shifting inward over time, with the leftmost part of the wave being much closer to the plateau edge
at 85,660 km by the end of the Cassini Mission.
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resonant radius, which is consistent with the radial separation
of these waves. However, unlike the wave shown in Figure 4,
the signal from each of these waves is not a horizontal band,
but is instead tilted, indicating that the outer part of each wave
has a slower pattern speed than the inner part. Also shown in
this plot is a diagonal dotted line that indicates the expected
value of the pattern speed given by Equation (1), evaluated at

each radius. The signals from both waves generally follow this
trend, although the peak signals consistently occur at pattern
speeds ∼0°.1 day−1 faster than those predicted by Equation (1).
(Alternatively, the resonant radius that best explains the
rotation of the pattern at each radius is ∼10 km interior to
the observed location.) Furthermore, interior to W84.82, there
are a series of weaker signals that fall along this same trend,
indicating that there are additional wave fragments that are too
weak to be seen in the individual profiles. It appears that these
wave fragments all have pattern speeds close to the local
resonant value, rather than some fixed speed determined by an
external perturbation. This suggests that the perturbations
responsible for generating these features are no longer active,
consistent with the abovementioned idea that these are freely
propagating wave fragments created at some time in the past.
Next, consider the W86.40 wave analysis shown in Figure 6.

As mentioned above, this structure appears to be more of a
continuous wave than W84.82 and W84.86. However, the
wavelet analysis reveals that this wave also does not have a
single pattern speed. Again, the parts of the wave at larger radii
have lower pattern speeds that correspond to resonant radii
further from the planet. Also, between 86,400 and 86,420 km,
the pattern speed is again ∼0°.1 day−1 faster than the local rate,
corresponding to a ∼10 km inward offset in the assumed
resonant radius. However, this offset appears to become larger
with increasing radius between ∼86,420 and 86,450 km. These
variations in the observed pattern speed are again inconsistent
with this wave being generated by a strictly periodic perturbing
force. However, in this case, the observed temporal variations
in the wave itself are less consistent with discrete wave
fragments propagating through the rings. Indeed, more detailed
analysis of this structure indicates that it is generated by a
perturbing force with a continuously changing rotation rate (see
Section 4.2). It is also worth noting that the amplitude of the
wavelet signal does not follow a smooth trend with radius, but
instead has minima at ∼86,410 and ∼86,425 km.

Figure 4. The results of a wavelet analysis of a density wave driven by a
planetary normal mode. The top panel shows the normal optical depth (τn)
profile of the density wave W84.64 from the Rev 106 RCas occultation. The
bottom panel shows the peak value of the wavelet power ratio  for
wavelengths between 0.2 and 2 km for the observations from Epoch 1 as
functions of radius and pattern speed. The latter is expressed in terms of offsets
in both the assumed pattern speed δΩp and resonant radius δr from the nominal
values given at the top of the plot. In this case, the entire wave has the same
pattern speed, and so the peak signals at all radii fall along a horizontal line.
This is a characteristic found in most waves generated by satellites or planetary
normal modes.

Figure 5. The results of a wavelet analysis of the waves W84.82 and W84.86,
showing the same optical depth profile and peak  data computed in the same
way as Figure 4. In this case, not only do the two waves have different pattern
speeds, but each wave also shows variations in its pattern speed with radius.
These trends are parallel to the diagonal dotted line, which corresponds to the
local pattern speed of a wave at that location. Note also that additional wavelet
signals are found along this line interior to W84.82, which likely correspond to
additional wave fragments not obvious in the profile.

Figure 6. The results of a wavelet analysis of the wave W86.40, showing the
same optical depth profile and peak  data computed in the same way as
Figure 4. There are clear variations in the wave’s pattern speed with radius that
follow a trend similar to the diagonal dotted line that corresponds to the
expected local pattern speed. In this case, the peak signals appear to occur at
pattern speeds that correspond to a location 10–20 km interior to the observed
location.
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It is again interesting to compare the properties of this wave
with those of W85.67. As shown in Figure 7, this time-variable
wave, despite being a one-armed spiral instead of a three-armed
spiral, shows a variable pattern speed with a radial trend very
similar to that displayed by W86.40. Again, the parts of the wave
further from the planet have slower pattern speeds, but in this
case, the pattern speed is ∼0°.3 day−1 slower than the local
pattern speed predicted by Equation (1), which corresponds to a
resonant radius that is ∼10 km exterior to the observed location.
This difference in behavior between W86.40 and W85.67 can
probably be explained by the fact that the pattern speed of
W86.40 is slower than the local mean motion (i.e., it is generated
by an ILR), while the pattern speed of W85.67 is greater than the
local mean motion (i.e., it is generated by an OLR). This means
that if the frequency of the disturbing force were constant,
W86.40 would naturally propagate outward, while W85.67
would naturally propagate inward (Shu 1984).

Of course, this picture is complicated somewhat by the fact that
these waves appear to be generated by time-variable perturbations
whose resonance locations appear to be moving inward over time
(in fact, W85.67 appears to propagate outward, because the
relevant perturbation frequency is changing fast enough that the
resonant radius moves inward faster than the wave can propagate;
see Hedman & Nicholson 2014). Even so, it is reasonable to
expect that the various parts of W85.67 should still be propagating
inward, while those of W86.40 should be propagating outward.
The pattern speeds for both W86.40 and W85.67 therefore appear
to be biased in the direction of where the observed parts of the
wave should have come from. The pattern speeds of both these
waves may therefore reflect something about their past history.

It is also worth considering the last two m= 3 density waves
examined by Hedman & Nicholson (2014), W86.58 and W86.59.
These waves are harder to discern in individual profiles than
W84.82, W84.86, and W86.40, but they can be clearly detected in
the wavelet maps, as seen in Figure 8. As with W84.82 and
W84.86, it turns out that these two waves are part of an array of
weaker signals with a range of different pattern speeds that were

not apparent in individual profiles. In this case, the signals appear
to be much more patchy, suggesting that the region between
∼86.530 and ∼86,610 km contains an array of weak wave
fragments.
The above supposition is further supported by the fact that we

have found even more of these signals in other parts of the C ring.
For example, Figure 9 shows the wavelet analysis for the plateau-
like structure centered on 85,950 km. This region was not
previously identified as containing wave-like patterns (Baillié
et al. 2011), but the wavelet analysis reveals weak three-armed
spiral patterns all across this feature. The extended distribution of
patterns with a range of pattern speeds again suggests that
multiple weak wave fragments are probably the most common
three-armed spiral patterns in this region.
Figure 10 provides a general overview of the three-armed spiral

patterns in the middle C ring (the one-armed wave W85.67 is not

Figure 7. The results of a wavelet analysis of the waveW85.67, showing the same
optical depth profile and peak  data computed in the same way as Figure 4.
There are clear variations in the wave’s pattern speed with radius that follow a
trend similar to the diagonal dotted line that corresponds to the expected local
pattern speed. In this case the peak signals appear to occur at pattern speeds that
correspond to a location 10–20 km exterior to the observed location.

Figure 8. The results of a wavelet analysis of the region around 86,570 km,
including the W86.58 and W86.59 waves, showing the same optical depth
profile and peak  data computed in the same way as Figure 4. This region
shows signals with a range of pattern speeds, only two of which were
previously identified as wave-like.

Figure 9. The results of a wavelet analysis of the region around 85,950 km,
showing the same optical depth profile and peak  data computed in the same
way as Figure 4. Although there is not an obvious wave in the profile, m = 3
signals are visible throughout this region with a range of pattern speeds.

8

The Planetary Science Journal, 3:61 (34pp), 2022 March Hedman et al.



shown in a similar format because it appears to be unique). In this
case, the horizontal line at rL− robs= 0 corresponds to where the
observed radius equals the resonant radius used to calculate the
local pattern speed and phase correct the data. Note that all of the
m= 3 signals fall around 10–20 km below this line, corresp-
onding to pattern speeds 0°.1 day−1 faster than the expected local
rate, which is consistent with the prior plots. This plot also
highlights the curious fact that the strongest signals are mostly—
but not exclusively—found within the plateaux at 84,800, 85,950,
and 86,500 km (note that the m=−1 wave W85.67 is also
located within the plateaux at 85,700 km). However, there are a
few additional isolated m= 3 signals, most prominently around
86,300 and 86,800 km, that are not located within plateaux.

3. Methods

While inspection of selected optical depth profiles and wavelet
transforms provide evidence that the perturbations responsible for
these structures are time-variable, different techniques are needed
to quantify how the amplitudes and frequencies of these
perturbing forces have changed over time. For one, we need a
theoretical framework for interpreting the morphology of ring
waves driven by periodic forces with time-variable amplitudes and
frequencies. In addition, we need explicit procedures for
translating the observed wave properties into relevant information
about the history of the forces acting on the ring.

Fortunately, we have been able to develop a phenomenological
model for density waves generated by time-variable forces. This
model allows us to directly convert the observed wavenumbers of
the patterns in the rings into estimates of when those structures
were created, while the locations of these patterns can be
translated into estimates of the original resonant radius and thus
perturbation frequency, provided we have a reasonable estimate of

the local surface mass density of the rings. These mappings enable
us to translate the wavelet parameters F and into maps of the
perturbation strength as functions of time and pattern speed that
can be calibrated against known satellite density waves.
These theoretical models and analytical techniques are

described in detail below because they can provide a useful
general framework for interpreting evolving structures in planetary
rings. First, Section 3.1 discusses our phenomenological model,
which predicts a robust connection between a wave pattern’s
current wavenumber and its formation time. This basic theory is
then validated in Section 3.2 by examining density waves
generated by moons with known time-variable orbits. Next,
Section 3.3 describes how this theory can be used to translate
maps of F and into estimates of the strength and rotation rates
of the gravitational anomalies as a function of time. Note that this
process requires estimating the ring’s surface mass density by
comparing observations made at different times, and that it uses
nearby satellite-driven waves to normalize the perturbation
amplitudes. Finally, Section 3.4 applies these procedures to
satellite-driven density waves in order to validate our methods.
Readers more interested in what this analysis reveals about the

recent history of the planet’s gravitational field should feel free to
proceed directly to the last subsection, which also contains
illustrative examples of the maps we will use to document the
recent history of the perturbations acting on the rings.

3.1. A Phenomenological Model for Density Waves Generated
by Time-variable Forces

Standard theories of density waves assume that the relevant
perturbation forces have fixed frequencies and amplitudes (see,
e.g., Shu 1984). There is currently no detailed theoretical model
for how ring material should respond to transient periodic

Figure 10. An overview of all of the m = 3 patterns in the middle C ring. The top panel shows the normal optical depth profile, while the bottom panel shows the peak
value of the wavelet power ratio  for wavelengths between 0.2 and 2 km for the observations from Epoch 1 as functions of radius and the difference from the
expected local pattern speed at each radius.
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perturbing forces, and rigorously extending existing theories to
such situations is beyond the scope of this work. Thus, we will
instead develop a phenomenological model that enables us to
make reasonably secure estimates of when these waves were
originally generated and their initial perturbation frequencies/
pattern speeds.

This model is based upon earlier work by Tiscareno et al.
(2006) that treated the density waves generated by Janus and
Epimetheus as a set of wave fragments that propagate at fixed
speeds from where they were generated. Here, we posit that, at
some time in the past, a periodic perturbing force started to
generate a density wave in the rings, but at some later time that
force either disappeared or changed frequency, leaving a wave
fragment that propagates away from its original location at a
rate given by the local group velocity (see Equation (8)) and
has a wavelength that becomes progressively shorter, while its
pattern speed remains close to the local rate predicted by
Equation (1). Furthermore, we will show that these waves have
a radial wavenumber that is proportional to the time that has
elapsed since the wave was created, and a location that depends
on both that elapsed time and the ring’s surface mass density.

3.1.1. General Framework and Notation

In order to properly quantify the evolution of the location
and wavelength of these patterns, we need a generic picture for
density wave–like structures that does not assume the pattern
has a fixed pattern speed imposed by an outside force.
However, for the sake of simplicity, we can still assume that
the ring particles at each semimajor axis a follow a (rotating)
streamline with m-fold symmetry, so that the radial location of
the streamline r can be written as the following function of
(inertial) longitude λ and (implicitly) time t:

( ) [∣ ∣( ( ))] ( )l f= - -r a A a m a tcos , , 9e 0

where Ae parameterizes the amplitude of the radial motions and
f0 gives the pattern’s phase. In general, f0 can depend on time
(yielding a rotating pattern), and both Ae and f0 can depend on
semimajor axis a, leading to variations in the distance between
adjacent streamlines that correspond to variations in the ring’s
surface density. More specifically, the surface mass density σ in
such a situation can be written in the following form:

( ) ( )s l
s

=
¶ ¶

a t
r a

, , , 100

where σ0 is the unperturbed surface mass density. The
denominator of this expression can be evaluated from
Equation (9), which in general gives:
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For standard density waves, we can assume that Ae is a
sufficiently smooth function of a so that the second term in the
above expression can be ignored, which means
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and so long as Ae is sufficiently small, the surface mass density
has the following form:

( ) ∣ ∣ [∣ ∣( )] ( )s l s s
f

l f= -
¶
¶

-a t A m
a

m, , sin . 13e0 0
0

0

The surface mass density therefore has sinusoidal density
variations in both the radial and the azimuthal directions.
However, we still need to show that the density variations in
the radial direction correspond to sensible wave-like structures,
and that the entire pattern rotates at a sensible rate. To do this,
consider the phase of these variations:

( ) ∣ ∣[ ( )] ( )f l l f= -a t m a t, , , . 140

By construction, this pattern must have an azimuthal
wavenumber |m|. However, the pattern speed and radial
wavenumber of the wave are determined by derivatives of
f0. Specifically, the radial wavenumber is the radial derivative
of the phase at a fixed time t:

( ) ∣ ∣ ( )f f
=

¶
¶

= -
¶
¶

k a t
a

m
a

, ; 15
t t

0

while the pattern speed is the time derivative of the phase at a
fixed semimajor axis a, divided by− |m|:

( )
∣ ∣

( )f f
W = -

¶
¶

=
¶
¶

a t
m t t

,
1

. 16p
a a

0

Hence, we need to determine how f0 depends on semimajor
axis and time. For the sake of concreteness, we will here
consider three different situations: freely evolving spiral
patterns, forced density waves with a common pattern speed,
and, finally, density wave fragments that were initially
generated like normal density waves but then propagate freely
through the rings.

3.1.2. Freely Evolving Spiral Patterns

First, consider a freely evolving spiral pattern that arises from a
situation where the streamlines at all radii are initially aligned with
each other (i.e., f0= 0 for all a at some time t= 0).5 This
relatively simple arrangement cannot persist indefinitely
because the particles can only follow closed |m|-fold symmetric
streamlines if those streamlines rotate at a rate that depends on
the radial location in the ring. For the sake of clarity, we will
denote this streamline pattern rotation rate as Ωs in order to
distinguish it from the observed pattern speed of the wave. For
a massless ring, Ωs must satisfy the following expression:

( ( ) ( )) ( ) ( )k- W =m n a a a , 17s

where n(a) and κ(a) are the particles’ mean motion and radial
epicyclic frequency, respectively. This particular expression
ensures that the time it takes the particle to go around the
rotating pattern once (i.e., 2π/|Ωs− n|) is an integer multiple of
the time between two pericenter passages (i.e., 2π/κ).

5 In principle, we could allow f0 to be an arbitrary function of a at this time,
but such complications are not particularly informative here.
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Since Ωs(a) is the local free rotation rate of the streamlines,
this means that the phase is simply

( ) ( ) ( )òf = W ¢ = Wa dt a t, 18
t

s s0
0

which means that in this case the wave’s pattern speed is equal
to the local streamline rotation rate:

( ) ( ) ( )W = Wa t a, . 19p s

Meanwhile, the radial wavenumber of the pattern is

( ) ∣ ∣ ∣ ∣ ( )
f

= -
¶
¶
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k a t m
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m
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t, , 20
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and so the wavenumber increases linearly with time. To obtain
a more explicit expression for this wavenumber, we can note
that to first order ( ) ( ) kn a a GM aP

3 , where G is the
fundamental gravitational constant and MP is the planet’s mass.
In this case, we have
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and so the derivative is
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This yields the following expression for the wavenumber of a
freely evolving spiral pattern:

( ) ∣ ∣ ( ) -k a t m
GM
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t,

3

2
1 . 23P
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So in this case, the radial wavenumber increases with time at a
linear rate that just depends on the feature’s location and the
planet’s mass.

A reasonable concern about the above calculation is that the
pattern speed of the observed m= 3 waves are roughly 0°.1 day−1

faster than the expected value of Ωs from Equation (17) (see
Figures 5 and 6), and the observed pattern speeds for the m=−1
wave are about 0°.3 day−1 below the expected value of Ωs (see
Figure 7). However, these offsets can be explained by realizing
that Equation (17) neglects the orbital perturbations due to the
ring’s own self-gravity. The gravity of the rings can be
incorporated into the above calculation by considering the
standard dispersion relation for density waves (Shu 1984), which
modifies the equation for the streamline rotation rate Ωs into the
following form:

( ) ∣ ∣ ( )k p sW - = -m mn G k2 , 24s
2 2

0

where σ0 is the ring’s surface mass density and k is the radial
wavenumber of the pattern. This reduces to Equation (17) when
σ0 approaches zero, and so long as 2πGσ0k= κ2, the last term
in the above equation can be treated as a small perturbation. In
this case, we can solve for Ωs, which to first order in σ0
becomes

∣ ∣ ( ) k p s
k

W - +n
m

G

m
k . 25s

0

As before, Ωs turns out to be equal to the observed pattern speed
of the wave, which is now slightly different from the value
predicted by Equation (17). For the waves with m= 3, the extra

term causes the real pattern speed to be slightly higher than the
expected speed, while for the m=−1 wave, this term causes the
real pattern speed to be slightly lower than the expected speed,
both of which are consistent with the observed wave. Further-
more, if we assume a value of κ ; 1220° day−1, which is
appropriate for this part of the C ring, as well as σ0 ; 1 g cm−2

(see Section 3.3 below) and k= 2π/1 km, then we find the
correction term is +0°.09 day−1 for the m= 3 waves and
−0°.26 day−1 for the m=−1 wave, both of which are consistent
with the observed offsets in the pattern speeds shown in
Figures 5–7. These slight changes in the pattern speed cause
comparably small changes in the rate at which the wavenumber
increases over time. For the sake of simplicity, these small
changes in the winding rate will be neglected from here on.

3.1.3. Resonantly Forced Waves

Next, consider a density wave driven by a (first-order)
resonance with a perturbing force with frequency ΩR. In this
case, the standard expression for the phase of the streamlines is
(Shu 1984):

∣ ∣( ) ( ) ( ) ( )f l
ps

= - W +
-
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a a
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L
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4
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where aL is the semimajor axis of the exact resonance. Note
that the sign on the second term ensures that the phase
increases with increasing a for waves with m> 1 and m< 0. In
the m> 1 case, the wave only exists exterior to aL and so
increasing a corresponds to increasing ( )-a aL

2, while in
the m< 0 case the wave only exists interior to aL so
increasing a corresponds to decreasing ( )-a aL

2. Combining
Equations (26) and (16) yields the correct pattern speed

( )W = W . 27p R

Furthermore, combining Equations (26) and (15) yields the
standard expression for the wavenumber as a function of
distance from the resonance:
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However, it is now useful to rewrite this expression in a slightly
different form:
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where the term in brackets is the same as dk/dt for the freely
evolving spiral pattern. This means the second term should
have units of time, and indeed it is the time it would take a
spiral wave-like disturbance to propagate the distance between
a and aL.
To see why this is indeed the case, recall that the dispersion

relation for density waves in a ring has the form (Shu 1984; see
Equation (24) above)

( ) ∣ ∣ ( )w k p s- = -mn G k2 , 302 2
0
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where ω= |mΩp| is the (positive-definite) frequency of the
pattern at a fixed radius and longitude. Thus, we obtain the
following standard expression for the group velocity:

( )
( ) ( )w p s
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p s
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¶
¶
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k

G

mn
m

G
sign , 31g

0 0

where in the last expression we assume that Ωp= n− κ/m,
which is a good approximation for all density waves.
Furthermore, if we assume k GM aP

3 , then we find the
group velocity of the wave is given by the standard expression:
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Note that this expression is independent of wavenumber, which
means that if the surface mass density remains constant, a wave
will propagate at a constant speed regardless of what its
wavelength currently is or how its wavelength has evolved over
time. Furthermore, this means that Equation (29) can be written
as
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or, equivalently,
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where δt is the time a wave fragment would have taken to travel
the distance a− aL. Note that since a− aL and vg have the
same sign, we can also say δt= (a− aL)/vg.

The observed wavelengths for both freely winding patterns
and resonantly driven waves can therefore be understood in the
same basic framework. That is, the wavenumbers of both these
structures increase linearly with time at a set rate, and the
observed trends with distance at a given time arise either
because this rate varies with position (for free spiral patterns) or
because the wave travels progressively further away from
where it was originally excited (for resonantly driven density
waves).

3.1.4. Detached Density Wave Fragments

Finally, let us consider the case where a wave fragment is
launched from one location and propagates through the ring.
We will assume here that part of a wave is created by a
resonance at semimajor axis aL with a fixed pattern speed, but
at some time the resonant forcing stops and the wave continues
to propagate through the ring at the speed vg and with a pattern
speed Ωp equal to the local free streamline rotation rate
Ωs= n(a)− κ(a)/m. (Note that while this is again not precisely
true for the observed density waves, the differences between Ωp

for the observed waves and Ωs are of order 1–2 parts in 104,
and so can be neglected for these particular calculations.)

Let us define the time when the resonant forcing stops as
t= 0. At that time, we have a standard forced density wave,
and so the wave phase is given by Equation (26), and the
corresponding value of f0 is
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Note that we designate the semimajor axis of the wave at this
particular time as ai in order to distinguish this from its
observed location at a time δto after the resonant forcing stops.
We will designate the observed location of this part of the wave
at that time as ao. If we assume a constant group velocity vg,
these two quantities are related by the expression
ao= ai+ vgδto. Of course, in reality, the group velocity does
vary with semimajor axis (see Equation (32)), but since the
wave travels a small fraction of its original semimajor axis (less
than 100 out of 80,000 km), these variations in vg should be
less than 1%, which can be neglected here. Furthermore, if we
assume that vg can be approximated as a constant, we can
rewrite the above expression for the initial phase in the
following way:
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where δti= (ai− aL)/vg is an estimate of how much time has
elapsed since the relevant part of the wave was formed at the
resonance. Note that this quantity is always positive, since vg
and ai− aL always have the same sign.
After t= 0, the wave not only propagates a finite distance

through the rings, but it also accumulates an additional phase
shift, given by the following expression:
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which we may evaluate by expanding to first order in ¢v tg :
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and then doing the integrals:
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or, equivalently:
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Note that this phase shift only depends explicitly on ai, not
ao= ai+ vgδto. If we take the time derivative of this
expression, assuming ai is independent of time, then we get
the correct local pattern speed at ao:
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If we want to reexpress this in terms of ao, we need to be
careful, because if we replace ai with simply ao− vgδto, then
the phase shift can be rewritten in the following form (to first
order in vgδto ):
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However, in this case the pattern speed becomes:
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which would mean the speed of the pattern does not change as
it propagates, contradicting our original assumption. The issue
is that a fixed ai only corresponds to a fixed ao at one particular
value of time, so the correct relationship is ai= ao− vgτo,
where τo is a fixed number that equals δto at the time of the
observation. In this case, we obtain the following expression
for δf0:
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This yields the following expression for the pattern speed:

( ) ( )
df
d

t d
¶
¶

= W -
¶W
¶

+
¶W
¶= =t

a v
a

v t
a

, 45
o a

s o g o
s

a a
g o

s

a a

0

o o i

where the last two terms cancel out to first order at the time
when τo= δto, leaving the desired value of Ωs at the observed
location. In order to get the wavenumber, we need to compute
the absolute phase of the wave by adding Equations (40) and
(36). If we choose to leave things in terms of ai, then we can
note that one term in Equation (40) has a very similar form to
the initial phase in Equation (36), except that δto replaces δti
and ai replaces aL. Since ai− aL= aL, we can approximate ai
as aL in this expression, and then combine this with
Equation (36) to get the following expression for the phase:
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We can now convert this into an explicit function of ao by
again using the identity ai= ao− vgτo, which yields:
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where we have also used the identity δti= (ai− aL)/vg. Note
that when we take the derivative to get the wavenumber, we
assume that δto is a constant, and so we can just equate τo= δto.
Taking the appropriate derivative to get the radial wavenumber
then yields:
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Rewriting the second term back in terms of δti= (ai− aL)/vg,
substituting in the above expression for ∂Ωs/∂a and again

assuming ai; aL, this becomes:
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This is the sensible generalization of the previous expressions,
demonstrating that even in this case the wavenumber at a given
location is proportional to the time elapsed since the wave was
generated (which is δto+ δti here).

3.1.5. Model Summary

Since all these different cases yield the same basic
expression for k, we can use the observed wavenumber and
location of any wave to deduce when the wave was formed and
its original pattern speed. First of all, given the observed k of a
wave with a specified m at a given radius r, the elapsed time
since that particular part of the wave formed is given by the
following expression:

∣ ∣
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Furthermore, given this time and an estimate of the surface
mass density σ0, we can estimate the radial displacement
experienced by the wave to be:
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which can be used to deduce the wave’s initial location. The
corresponding initial pattern speed can also be estimated using
Equation (17).
The above expressions do rely on a couple of approxima-

tions that are worth keeping in mind. First of all, we assume
that r= a= aL here, which is a good approximation for any
sensible density wave, since a− aL= a and the mean radius of
any low-eccentricity orbit should be close to a. We also neglect
the small deviations between Ωs given by Equation (17) and the
true pattern speed of the wave, which should only affect these
calculations by a fraction of a percent in the C ring. More
importantly, we here assume  kn GM aP

3 . The differ-
ence between n and κ in Saturn’s rings is only 0.5%–2%, so
this approximation is reasonably good for all of the waves
considered here. However, if one wants to use this method to
obtain estimates of the pattern speeds at higher precision than a
few percent of the wave’s total displacement, then they will
need to use more complex expressions for the pattern winding
rates, which may differ between free waves and resonantly
driven waves. Such complications are well beyond the scope of
this particular analysis.

3.2. Validation of the Phenomenological Model

In order to validate the above model, we can consider waves
generated by the co-orbital moons Janus and Epimetheus.
Every four years, mutual gravitational interactions between
these moons causes each of them to swap between two
different semimajor axes, producing distinct changes in their
mean motions that change the locations of their mean motion
resonances in the rings. Prior studies by Tiscareno et al. (2006)
showed that the unusual morphologies of the density waves
generated at these locations could be modeled as a series of
wave fragments generated by the moons at different times.
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This is the same basic idea behind the model described above,
and since the orbital history of these moons is well established,
these waves provide a useful test case.

More specifically, let us consider the wave associated with
the 7:5 resonances with Janus and Epimetheus. This wave
occurs in the outer Cassini Division, where the surface mass
density is around 10 g cm−2, which is closer to typical
conditions in the C ring than other Janus waves found in the
A and B rings. We will also use wave profiles derived from the
same three occultations used in Section 2.1 to illustrate the time
evolution of the C ring structures. The top left panel of
Figure 11 shows these three occultation profiles. Note that the
location of the wave signal differs among the three profiles, due
to the changing locations of the two moons. The most
prominent wave signals in all of these profiles are due to the
larger moon Janus, but weak wave signals can be seen around
121,250 km in the first and last occultation, which are likely
due to the smaller moon Epimetheus.

The three other panels on the left of Figure 11 show wavelet
transforms of these three profiles, which show the strength of
the periodic signals as functions of radius and wavenumber.
For normal density waves, these wavelets would show a
diagonal band, but in these cases the pattern is more
complicated. In particular, for the first and last occultation,
the band shows a distinct kink around wavenumbers of 2 km−1,
while for the middle observation, the signal seems to disappear
around the same wavenumber. These anomalies can be
attributed to the periodic changes in the moons’ orbits, and
this connection can be dramatically confirmed by using
Equation (50) to convert the wavenumber values into estimates
of when the patterns were generated (shown on the right-hand
axes of each plot), and marking the times when the moon’s
orbits changed near the start of 1998, 2002, 2006, 2010, and
2014. The sudden changes in the strength or slope of the
dominant signals fall close to those times, as one would expect.
Furthermore, if we take a closer look at these wavelets, we can
see in both the RCas 106i and gamCru245e occultations that
there is a signal around 121,250 km that is only clearly present
in the time ranges of 2002–2006 and 2010–2014. This signal is
absent from the gamCru187i observation, but another signal
can be seen around 121,300 km between 2006 and 2010. This
signal is consistent with the shifting signals from Epimetheus.

We can further confirm the associations between these
signals and the changing motions of the moons if we account
for the radial propagation of the wavelet signals by shifting the
wavelet signal at each wavenumber by the amount given in
Equation (51). This shift depends on the assumed surface mass
density, which for this wave we will assume to be 11 g cm−2,
consistent with the values derived from nearby waves (Colwell
et al. 2009). These corrected wavelet transforms are shown in
the lower three panels on the right of Figure 11. In this case, the
horizontal axis is no longer the observed radius, but is instead
the inferred radius where the wave patterns originated from at
the indicated date. In these panels, we not only plot horizontal
lines corresponding to the dates of the orbital swaps, but we
also provide vertical lines marking the nominal positions of the
resonances with the moons at different times. Note that the
location of the Janus resonance oscillated between the two
locations around 121,250 km, while the Epimetheus resonances
oscillated between the locations around 121,220 and 121,280
km, respectively. In these plots, we see that during the
times between 2002–2006 for RCas106i, 2006–2010 for

gamCru187i, and 2010–2014 for gamCru245e, the two signals
are aligned with the expected locations of the signals from
Janus and Epimetheus. Furthermore, prior to these epochs, the
strong Janus signal moves in the appropriate direction in all
three cases.6

For the RCas106i and gamCru245e signals, the trends in the
data before the shift are not particularly well aligned with the
expected signals, but this can be explained as a result of the
finite wavelength resolution of the wavelet transform. Around
121,300 km in both profiles is the location where both
components of the wave are overlapping, and the finite
wavenumber sensitivity of the transform is blurring the two
signals together into a nearly vertical band in the raw wavelet,
which is then sheared in the transformed wavelet. Note that for
the gamCru187i data this is less of an issue, since the signal
created before 2006 shifts outward, away from the more recent
wave, and so shows the expected trend. The patch shifting
inward in this case is instead due to a small data gap in the
profile, coupled with the overprinted Epimetheus wave. These
panels therefore show that these transformed wavelets can
document variations in the ring perturbations over time, but
also reveal that these reconstructions may be imperfect if there
are multiple overprinted patterns at the same radius.
Finally, the top right panel of Figure 11 shows the average

signal amplitude between two swaps from each of the wavelet
transforms below. These plots are all normalized so that the
peak of the Janus signal is unity, and all three show that the
signal from the Epimetheus resonance is between 0.4 and 0.5
times the signal from Janus. This is perfectly consistent with
the expected perturbations from the two moons. The mass ratio
of the two moons is 0.278 (Jacobson et al. 2008), but these
particular resonances are second order, and so the perturbations
are proportional to the product of the moon’s mass and orbital
eccentricity (Tiscareno & Harris 2018). Janus’s eccentricity is
0.0068, while Epimetheus’s is 0.0097 (Jacobson et al. 2008), so
the expected ratio of the perturbation strengths is 0.4, which is
consistent with these curves. This implies that the wavelet
amplitude at each wavenumber is a good measure of the
different perturbations’ relative strengths.

3.3. Procedures for Extracting the History of Planetary
Asymmetries

Having established a theoretical framework for interpreting
waves generated by time-variable periodic forces, we can now
discuss the analytical methods for translating the observed ring
structures into a historical record of asymmetries in the planet’s
gravitational field. These techniques start with the average
phase-corrected power f and power ratio  for the three sets
of occultations given in Table 1, assuming m= 3 or m=−1.
The ratio  yields higher signal-to-noise detections of the
relevant wave signals, while f enables the relative amplitudes
of the strongest wave signals to be quantified. For this
particular analysis, both these quantities are computed using
wavelet transforms of the residual normal optical depth profiles

¯t t t= -r n n, where t̄n is the average normal optical depth
across all of the occultations. Subtracting t̄n has little effect on
the wave signals in each profile, but has the advantage of
removing the sharp edges that bound the various plateaux from

6 Note that the wave signals are weak for wavenumbers below 1 km−1

because the wave amplitude initially grows linearly with distance from the
resonance (see Section 3.3.3). This causes the signal amplitudes to be low for a
time period within a few years of the observation.
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all of the profiles. These edges produce wavelet signals over a
broad range of wavenumbers, and while these signals are
reduced when the phase-corrected signals are averaged together
to give f, they are not completely eliminated due to the finite

number of occultations in each set. Using τr profiles therefore
yields much cleaner maps of the desired signals.
Since the structures of interest here have a range of pattern

speeds, we actually compute  and f at each radius for a

Figure 11. An example of using wavelet transforms to document recent ring history. The top left panel of this image shows three profiles of the density wave
generated in the Cassini Division by the 7:5 resonances with Janus and Epimetheus. Note that the structure of this wave changes over time due to the moons’ orbital
swaps every four years. The bottom three panels on the left show wavelet transforms of these three profiles, giving the strength of the periodic signals as functions of
radius and wavenumber. Overlaid on these plots are horizontal lines corresponding to the times when the moons undergo an orbital swap. Note the changes in the
slopes and locations of the wave signals at these times. The lower right three panels show wavelet transforms that have been adjusted to remove the outward
propagation of the wave patterns, assuming a surface mass density of 11 g cm−2. These plots also include overlaid vertical lines marking the positions of the
resonances with the two moons as functions of time. The top right panel shows the normalized average signal strength in the indicated time range for each of the below
transforms, showing the consistent relative strength of the signals from the two moons.
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range of pattern speeds around the expected local rate Ωp given
by Equation (17), corresponding to a span of±200 km in
resonant radius. We then find the maximum values of both of
these parameters at each radius and wavenumber for resonant
radii within 90 km of the observed location, which we will
designate as max and f

max . We also estimate the wavelet
amplitude due to the optical depth variations associated with
the relevant waves as a function of radius and wavenumber as:

( )


t
= fA , 52w

n

max

where  is the standard normalization factor that depends on
the radial resolution of the profiles drres, as well as the
wavenumber k and its sampling frequency dkres (Torrence &
Compo 1998):

( )
d d

=
r k

k
. 53res res

1 2

Note that we designate this wavelet amplitude Aw to distinguish
it from the amplitude of the variations in the optical depth
profile A(r).

In order to translate the observed signals inmax and Aw as a
function of observed radius ro and wavenumber k into estimates
of the properties and strengths of the gravitational asymmetries
as a function of rotation rate and time, we need to perform the
following three operations:

1. Convert the observed wavenumbers into estimates of the
wave initiation time using Equation (50).

2. Translate the radial locations of the features into the
original resonance location and perturbation pattern
speed/rotation rate using Equations (51) and (17).

3. Convert the observed wave amplitudes into estimates of
the perturbations in the gravitational potential based on
the observed amplitudes of comparable satellite-gener-
ated density waves.

Each of these steps is discussed in detail below.

3.3.1. Converting Wavenumbers to Wave Initiation Times

Converting the observed wavenumbers to wave initiation
times is the most straightforward step in this process because
Equation (50) allows wavenumbers to be directly translated
into the time that has elapsed since the wave was formed. We
can then convert these elapsed times into absolute times by
adding back the mean dates for each set of occultations, which
are 2 008.8, 2 013.5, and 2 017.2 for the three epochs in
Table 1. This enables us to express both max and Aw as
functions of the observed radius and wave initiation time ti.

3.3.2. Translating Radial Locations to Rotation Rates of Original
Perturbations

Translating the radial locations of the structures into the
rotation rate of the original perturbation is a more involved
process because it needs to account for the fact that any wave
with a finite wavenumber has propagated a finite distance.
Furthermore, the distance the wave propagates depends on the
ring’s surface mass density, which can vary on a variety of
spatial scales. Fortunately, the theoretical framework provided
in Section 3.1 above provides a novel way to estimate the

group velocity and surface mass density, by comparing
observations made at different times.
The basic idea is that given arrays of Aw values7 derived from

observations at different times, we can choose a wavenumber
for each array that corresponds to one particular wave initiation
time and generate profiles of wave signal strength versus radius
that contain peaks at locations corresponding to waves
generated at that specific time. Figure 12 shows an example
of the amplitude profiles for wave signals generated in the year
2000 derived from the three different observation epochs. Each
of these profiles shows two peaks that correspond to the waves
seen in Figure 1, but the locations of these peaks shift to larger
radii for observations taken at later times, because of how the
wave propagated through the rings. More quantitatively, the
difference in the wave signal’s position between two profiles is
Δr= vgΔt, where Δt is the time elapsed between the two
observations and vg is the group velocity given by
Equation (32). We can therefore use the observed radius shift
between the peaks Δr and the known time between the
observations Δt to estimate vg as just Δr/Δt. Furthermore, we
can solve Equation (32) to obtain the following estimate for the
local unperturbed surface mass density:

( )s
k
p

=
D
D
r

G t
. 54o

In practice, we estimate Δr as the offset that yields the
maximum cross-correlation coefficient between a pair of
profiles covering a specified radius range that includes wave
signals. For each radial range and each pair of Aw arrays, we
estimate Δr for signals initiated each year between 1980 and
2005. We then select out the Δr estimates for which the peak
correlation coefficient is higher than some threshold value
(either 0.5 or 0.75), and take the mean and standard deviation
of those data to derive estimates and uncertainties for the
surface mass density. Table 2 and Figure 13 summarize the
results of these calculations. Note that the estimated uncertainties

Figure 12. Plots of the normalized wavelet amplitudes Aw for waves generated
in the year 2000 as a function of the observed position at the three observation
epochs. Note that since all three profiles correspond to a fixed absolute
initiation time, each profile is for a different wavenumber value in the wavelet.
The signal peaks move to larger radii over time, consistent with the trends
observed in Figure 1.

7 We also considered the max arrays, but they were not as suitable for this
because of signal-to-noise considerations.
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from each pair of epochs are often smaller than the scatter among
the measurements. This most likely reflects finite correlations
between the signal profiles at different years due to the finite
wavelength resolution of the wavelet transform. Rather than
explicitly computing these correlations, we instead just consider
the scatter among the mass density estimates from the different
pairs of epochs as being more representative of the real
uncertainty.

We can validate this method of estimating surface densities
by first considering the density estimate for the region between
89,850 and 89,950 km, which covers the locations of the
Mimas 6:2 and Pandora 4:2 density waves. Baillié et al. (2011)
estimated the ring surface mass density based on the radial
wavelength trends in these waves as 1.33± 0.20 and
1.42± 0.21 g cm−2, respectively, which are in very good
agreement with our estimate of around 1.28 g cm−2. This
indicates that this approach to measuring surface mass densities
works well, at least for satellite waves. Further reinforcing this
view is that when we apply this technique to the region

between 88,400 and 88,500 km, a region of similar optical
depth that should contain the Prometheus 4:2 wave, we obtain
similar estimates of the surface mass density, albeit with larger
uncertainties.
Turning to the waves generated by the planet between 84,000

and 87,000 km, we continue to find reasonably consistent results
at most locations. For the regions 84,780–84,880 and
86,370–86,470 km, which correspond to the strongest m= 3
waves, we get fairly consistent estimates of the surface mass
density. The dispersion among the estimates is somewhat larger
for some of the other regions containing m= 3 waves and the
region containing the m=−1 waves, but all of the measure-
ments between 84,500 and 87,000 km fall in a range between
about 0.6 and 1.6 g cm−2, which is compatible with the value of
1.41 g cm−2 derived from an analysis of the nearby wave
W87.19 (Hedman & Nicholson 2013). Note that these mass
densities are smaller than the prior estimates derived by Hedman
& Nicholson (2014) under the mistaken assumption that these
waves did not evolve over time. The consistency of these

Table 2
Mass Density Estimates Derived from Group Velocity Estimates for the m = 3 and m = −1 Waves in the C Ring

Radius Range Assumed Cross-Corr. Mass Density (g cm−2) Mass Density (g cm−2) Mass Density (g cm−2) Mass Density (g cm−2)
(km) m Limit Epoch 1–Epoch 2 Epoch 1–Epoch 3 Epoch 2–Epoch 3 Combined

84200–84300 3 0.5 2.52 ± 0.82 1.74 ± 0.86 1.82 ± 0.76 2.02 ± 0.43
84780–84880 3 0.75 1.61 ± 0.08 1.57 ± 0.04 1.59 ± 0.06 1.59 ± 0.02
85660–85760 −1 0.75 1.14 ± 0.03 1.06 ± 0.03 0.83 ± 0.03 1.01 ± 0.16
86370–86470 3 0.75 1.29 ± 0.04 1.37 ± 0.03 1.44 ± 0.04 1.37 ± 0.08
86520–86620 3 0.75 0.76 ± 0.09 0.66 ± 0.07 0.43 ± 0.06 0.62 ± 0.16
86750–86850 3 0.5 1.31 ± 0.23 1.00 ± 0.24 0.72 ± 0.03 1.01 ± 0.29
88400–88500a 3 0.5 1.04 ± 0.06 1.39 ± 0.03 1.86 ± 0.08 1.42 ± 0.41
89850–89950b 3 0.75 1.29 ± 0.03 1.28 ± 0.02 1.29 ± 0.02 1.28 ± 0.01

Notes. Note that error estimates for each pair of epochs are based on the scatter among the different initiation time slices, while the error on the combined estimate is
based only on the scatter among the three different epoch pairs.
a The region containing the Prometheus 4:2 density wave.
b The region containing the Pandora 4:2 and Mimas 6:2 density waves.

Figure 13. Estimates of the ring’s surface mass density derived from the observed group velocities of the waves. The colored diamonds are the results of this analysis,
while the plus signs are based on standard density wave analyses (Baillié et al. 2011; Hedman & Nicholson 2013).
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numbers provides further evidence that this approach yields
sensible estimates of the surface mass density.

One possible inconsistency is that prior analyses of the wave
W84.64, identified as an m=−2 saturnian normal mode by
Hedman & Nicholson (2013), indicated a mass density of
4.05 g cm−2 around that wave, a factor of 2 higher than any of
the estimates obtained here, even including those that occur
quite close to that wave. Furthermore, there is a weak m= 3
wave interior to W84.64 around 84,250 km, and an analysis of
this region yields mass densities between 2 and 3 g cm−2 (albeit
with a fair amount of scatter). It is therefore not clear whether
there is a sharp edge or peak in the surface mass density around
84,500 km that is not obvious in the optical depth, or if there is
some error in the prior calculation of the surface mass density
from W84.64. Such details are best left to future work.

For a given value of σo, we can translate the observed radius of
a feature r observed at a time to to the location where the wave
originated from ri using the formula ri= ro− vg(to− ti), where ti
is the wave initiation time given in the previous subsection.
Applying this transformation to all wave initiation times yields the
arrays ( ) r t,i i

max and Aw(ri, ti), or, equivalently, ( ) W t,p i
max and

Aw(Ωp, ti), where Ωp is the resonant pattern speed at each ri given
by Equation (17). In principle, we could analyze each wave
fragment using the best-fit surface mass densities at each location.
However, in practice, the observed variations in the surface mass
density are small enough to be ignored for the purposes of this
initial study, and so for the sake of simplicity we will simply
assume a uniform surface mass density of 1.3 g cm−2 for this
entire region. Note that the errors in ri and Ωp induced by an
incorrect estimate for σo grow linearly with the age of the wave
fragment, but even after 30 yr (the time frame we can currently
probe) an error of±0.5 g cm−2 in σo will only produce errors in ri
of around 7 km, which corresponds to errors in Ωp of order
0°.1 day−1, assuming an m= 3 wave and 0°.3 day−1 for an
m=−1 wave.

3.3.3. Converting Wave Amplitudes to Perturbation Potential
Amplitudes

While the array ( ) W t,p i
max already provides a direct

estimate of the signal-to-noise ratio for any wave fragments,
we still need to convert the wavelet amplitudes Aw into estimates
of the gravitational potential perturbations F¢m responsible for
making these waves. Such conversions are nontrivial, because as
a wave fragment propagates through the rings, its amplitude
evolves in response to two competing processes. At first, the
wave’s amplitude increases over time as the wavenumber
increases due to decreasing distances between ring particle
streamlines. Eventually, however, dissipation due to collisions
among ring particles causes the amplitude of the pattern to fall
back toward zero (Shu 1984; Tiscareno et al. 2007). Hence, the
amplitude of the gravitational perturbation required to produce a
wave fragment of a given amplitude depends on the age (or
wavenumber) of that fragment.

In principle, one could use theoretical models to translate the
observed Aw at a given wavenumber into estimates of F¢m.
However, in practice, such an approach is not yet viable. First
of all, a density wave’s amplitude not only depends on the
gravitational perturbation, but also on the local surface mass
density, the effective kinematic viscosity of the ring material,
and the azimuthal wavenumber m (Shu 1984; Nicholson et al.
1990; Tiscareno et al. 2007; Tiscareno & Harris 2018). Second,
the wavelet amplitude Aw is not the same thing as the actual

amplitude of the wave in the profile, both because a wavelet
transform disperses the signal from the wave over a range of
wavenumbers (Torrence & Compo 1998) and because the finite
spatial resolution of the profile has wavelength-dependent
effects on the measured wave amplitude. A general method that
can account for all of these different phenomena is well beyond
the scope of this investigation.
Instead, we employ an empirical approach that uses nearby

satellite waves to determine the relevant conversion factors.
There are three m= 3 waves situated within the C ring plateaux
generated by the Mimas 6:2, Pandora 4:2, and Prometheus 4:2
resonances. These three waves are not only found in environ-
ments similar to the majority of the time-variable m= 3 and
m=−1 signals, but they also have the same value of |m− 1| as
all of those waves. The conversion factors between Aw and F¢m
for these three satellite waves should therefore be most similar to
those of the relevant planet-generated waves (see the Appendix
for details). Furthermore, the F¢m values for each of the satellite
waves can be explicitly calculated (see the Appendix), so these
conversion factors can be derived from the measured wavelet
signals. We therefore determine the peak wavelet signal
associated with each of these waves at each epoch and wave
initiation time by finding the maximum value of Aw(Ωp, ti)
within a selected range of pattern speeds surrounding the
expected location of the desired wave (762°.5–763°.5 day−1 for
the Mimas 6:2 wave, 762°.5–762°.95 day−18 for the Pandora 4:2
wave, and 781°.5–782°.5 day−1 for the Prometheus 4:2 wave).
Figure 14 shows the resulting profiles of peak wavelet
amplitude versus elapsed time. All of these profiles show a
clear amplitude peak between 15 and 30 yr, which is roughly
consistent with the dimensionless damping lengths of around
6.65 found by Baillié et al. (2011), which would correspond to
a characteristic damping time of around 22 yr (see the
Appendix).
The Mimas 6:2 wave has both the largest amplitude and the

smallest dispersion among the data from the different epochs, so
we choose to use that wave alone to estimate the conversion
factors from Aw to F¢m, with the other two waves being used to
check the validity of those conversions. The gravitational potential
perturbation associated with the Mimas 6:2 wave is a constant
value of 33 cm2 s−2 (Tiscareno & Harris 2018; see also the
Appendix), and we can estimate the peak amplitude of the Mimas
6:2 wave as a function of elapsed time δt as the average of the
three curves derived from the three epochs shown in Figure 14
(this average is shown as the black curve in the top panel of that
figure, as well as in Table 3). We can therefore estimate the
perturbation potential responsible for the wavelet signals by
simply dividing each column of an Aw(Ωp, ti) array by this
normalization curve and then multiplying the resulting array by
33 cm2 s−2.
Figure 14 also shows the potential perturbations associated with

all three density waves derived using this procedure. For each
wave, we also include a horizontal dashed line corresponding to
the expected value of the gravitational perturbation potential
(33, 30, and 21 cm2 s−2, respectively; see Tiscareno & Harris
2018). For both the Mimas 6:2 and Pandora 4:2 waves, the
relative amplitudes stay within 50% of their expected values,
while for the Prometheus 4:2 wave the curves deviate from the
expected value a bit more, most likely because of the lower signal-
to-noise for this wave. Still, these results show that this procedure

8 This range was smaller than the others to exclude the signals from the
stronger Mimas 6:2 wave.
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yields reasonable estimates of the gravitational perturbations
responsible for producing density waves in the C ring.

Of course, the conversion factors derived from the Mimas 6:2
wave may not be perfectly accurate for other waves, because a
wave’s amplitude not only depends onF¢m, but also on local ring
properties like the surface mass density and effective viscosity
(see the Appendix). Fortunately, since the Mimas 6:2 wave
occupies a similar environment as the planet-generated waves,
these potential inaccuracies are more manageable. In particular,
the background surface mass densities for all of the waves
considered here are between 0.6 and 2.0 g cm−2 (see Table 2).
Standard models predict that the conversion factor should scale
like s-

0
1 2 (see Equation (64) in the Appendix), so the observed

variations in the surface mass density across these rings should
only affect the F¢m estimates by at most 50%. Variations in the
effective ring viscosity across the middle C ring turn out to have
a more noticeable effect on the particular waves considered here.
Fortunately, inaccuracies in the conversion due to viscosity
variations can be identified because they cause time-dependent
changes in the conversion factors (see Equations (64) and (65) in
the Appendix). Errors in the assumed viscosity therefore result in
diagnostic disagreements among estimates of F¢m derived from
data obtained at different times. Such disagreements will be
noted when they occur.

3.4. Summary and Validation of Analytical Procedures

Figures 15 and 16 summarize the outputs of the full wavelet
analyses described above for the three m= 3 satellite waves.
These plots include the relevant parts of the max (signal-to-
noise) and F¢m (gravitational potential perturbation) arrays derived
from the three epochs as functions of wave formation time and
initial pattern speed. Note that data are only included where the
normalization curve in Table 3 is above 0.25 its peak value,
because for the data outside this region uncertainties in the
normalization dominate the visible appearance of the maps. The
three waves appear as nearly vertical bands in bothmax andF¢m,
consistent with each perturbation having a fixed frequency. There
is a slight slope in the Mimas wave at 763° day−1 in Figure 15
that most likely reflects the slight difference in the background
surface mass densities for these two waves in this region (Baillié
et al. 2011). Also note that the variations in the background
outside of these vertical bands have a common tilt that arises from
translating the observed location of the features to the initial
pattern speed of the perturbation.
These figures also show the peak values of the max and F¢m

arrays in the selected regions as functions of formation time. The
peak amplitudes F¢m are roughly the same over the entire time
span, consistent with the constant potential perturbations
between 20 and 33 cm2 s−2 associated with these waves. For
the Prometheus 4:2 wave shown in Figure 16, the signal-to-noise

Figure 14. Plots of the peak wavelet amplitude Aw and inferred gravitational
potential perturbation amplitude F¢3 as a function of δt for three m = 3 satellite
waves for the three observation epochs. For the Mimas 6:2 wave, the top panel
shows the measured peak wavelet amplitudes Aw from the three observation
epochs, along with the average of the three profiles. The second panel shows
the estimated gravitational potential perturbation amplitudes F¢3 based on this
template. The other panels show the observed peak wavelet amplitudes and
derived potential perturbation amplitudes for the weaker Pandora and
Prometheus 4:2 waves.

Table 3
Normalization Curves Based on the Average Signal from the Mimas 6:2 Wave

Elapsed A Elapsed A Elapsed A
Time Time Time

0 0.000 70 20 0.013 42 40 0.007 56
1 0.001 06 21 0.013 96 41 0.007 19
2 0.001 42 22 0.014 32 42 0.006 81
3 0.001 97 23 0.014 39 43 0.006 43
4 0.002 27 24 0.014 52 44 0.006 12
5 0.002 42 25 0.014 32 45 0.005 83
6 0.003 14 26 0.013 99 46 0.005 49
7 0.004 36 27 0.013 43 47 0.005 20
8 0.005 07 28 0.012 69 48 0.004 97
9 0.005 39 29 0.012 30 49 0.004 77
10 0.005 84 30 0.011 86
11 0.006 49 31 0.011 53
12 0.007 24 32 0.011 11
13 0.008 07 33 0.010 66
14 0.008 94 34 0.010 39
15 0.009 71 35 0.009 17
16 0.010 49 36 0.009 39
17 0.011 27 37 0.009 03
18 0.012 08 38 0.008 60
19 0.012 77 39 0.008 05
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is considerably lower than it is for the other two waves,
consistent with the wave’s lower amplitude. However, the wave
signal is fairly clear in themax arrays between 1990 and 2000,
and a weak enhancement in F¢m is also visible at these locations.
This implies that the lower limit on detectable perturbations is
around this level in these regions.

4. Results

The transformations described in Section 3.3 above yield
maps of the perturbation amplitudes associated with the various
Saturn-generated waves as functions of perturbation period and
time. When considering these plots, it is important to remember
that theF¢m estimates are likely only accurate to around 50% for

Figure 15. The results of the wavelet analysis of the Mimas 6:2 and Pandora 4:2 waves. The top row shows the power ratiosmax as functions of initial pattern speed
and formation time, while the bottom row shows the estimated potential perturbations F¢m. Each of the right three panels shows the arrays derived from one of the
Cassini epochs, while the left panels show the peak values ofmax and F¢m as functions of formation time. Note that the gray dotted lines in the left panels correspond
to the grayscale levels in the corresponding images. Also, data are only displayed for times where the normalization curve is at least 0.25 its peak value. In this case,
the two vertical bands in the images correspond to the perturbations from the Pandora 4:2 resonance at 762°. 8 day−1 and the Mimas 6:2 resonance around 762°. 9 day−1.
Note that the amplitudes of these signals are roughly constant around 30 cm2 s−2, and the pattern speeds do not change much with time, consistent with standard
satellite resonances.

Figure 16. The results of the wavelet analysis of the Prometheus 4:2 wave in the same format as Figure 15. In this case, the vertical bands in the wavelet maps
correspond to the signal from the Prometheus 4:2 resonance at 782°. 1 day−1. Note that the amplitude of this signal is roughly constant around 20 cm2 s−2, and the
pattern speeds do not change much with time, consistent with a standard satellite resonance.
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waves in regions similar to those occupied by the satellite
waves. Furthermore, as will be discussed in more detail below,
there is evidence that the regions between the plateaux and the
m=−1 wave may have different dissipation properties that
may introduce further systematic uncertainties in the inferred
perturbation strengths. Despite these limitations, these maps
provide useful information about the recent history of these
various gravitational perturbations.

The signals from individual features will be discussed in
detail below. However, it is first worth examining the overview
of the locations and pattern speeds of the m= 3 and m=−1
signals shown in Figure 17. For the sake of clarity, this plot just
shows the peak values of the power ratio andF¢m as functions of
radius and the corresponding initial pattern speeds, assuming a
constant surface mass density of 1.3 g cm−2. The power ratio
profiles show a uniform background level, and so provide
clearer information about the locations of the wave signals.
Meanwhile, the F¢m profiles indicate the relative strength of the
perturbations responsible for making these features.

The m= 3 signals in Figure 17 have roughly the same
distribution as the signals shown in Figure 10. The strongest
wave signals are observed in the middle of the plateau known
as P5 around 84,800 km and on either side of the P7 plateau at
86,400 km. The peak potential perturbations for all three of
these regions are above 50 cm2 s−2. These correspond to the
previously identified m= 3 wave signals designated W84.82,
W84.86, W86.40, W86.58, and W86.59 by Hedman &
Nicholson (2014). Meanwhile, in the m=−1 profile, there is
a single clear signal with a correspondingly large peak
perturbation amplitude in the P6 plateau at 85,700 km, which
corresponds to the wave previously designated as W85.67.
In addition to these previously known wave signals, the

plateau-like feature ER11 at 85,950 km also shows elevated
power ratios, but no obvious signals in the perturbation
potential amplitudes (in fact, the peak perturbations are lower
in this plateau than they are in the surrounding C ring). The
lack of obvious peaks in the perturbation amplitude implies that
the perturbations responsible for these signals are well below

Figure 17. An overview of the m = 3 and m = −1 waves in the middle C ring. The top panel shows an optical depth profile of the rings, while the lower panels show
the peak values of the potential perturbation F¢m and power ratiomax for elapsed times between 7 and 40 yr as functions of the corresponding initial pattern speed of
the waves (the plotted curves are the averages of the data from the three epochs, since the differences between the epochs were generally small). The gray shaded band
in these plots corresponds to the W84.64 wave, which contaminates the F¢m profiles.
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50 cm2 s−2, and so are substantially weaker than the previously
identified m= 3 waves.

More generally, it appears that the background F¢m levels are
higher in the background C ring than inside the plateaux, most
likely because of differences in the fine-scale structures of these
regions. Hence, weak wave signals might be harder to discern
outside of the plateaux. Still, there are narrow peaks in several
locations between the plateaux corresponding to pattern speeds
of around 804°, 812°.5, 813°.5, and 842° day−1 (another weak
peak around 820° day−1 is an alias of the m=−1 wave). By
contrast, the m=−1 profiles show no obvious additional
signals beyond W85.67.

For the sake of clarity, our discussion of the individual wave
features will begin with the strong m= 3 signals. First, we will
examine the features around 84,800 km that turn out to
represent short-lived asymmetries in the planet’s gravitational
field. We will then consider the longer-lived feature around
86,400 km, along with the m=−1 wave W85.67, and present
evidence that both of these waves likely have a common origin.
Next, we will discuss the structures found around 86,600 km
and show that these include both long-lived and transient
perturbations. After that, we will examine the weak patterns
around 85,900 km, and, finally, we will discuss the narrow
m= 3 signals between the plateaux.

4.1. Short-lived Perturbations between 832° and 834° day−1

Figures 18 and 19 show the results of our wavelet analysis
for the regions around the waves W84.86 and W84.82,
respectively. We can first consider the signals around
W84.86 because these are the simpler of the two. The wavelet
maps show a clear signal in both the power ratios and the
perturbation amplitudes, but unlike the satellite-driven density
waves shown in Figures 15 and 16, these signals do not have
constant amplitudes for all times. Instead, in this case, it
appears that the amplitude of the perturbation slowly grew from

a low value in the mid-1980s to a peak value of around
70 cm2 s−2 in 1999, before fading away again over the next few
years. Note that the detailed shape of this peak is smoothed
somewhat by the finite wavenumber resolution of the wavelet
transform, so the actual perturbation may not have fallen as
smoothly after 1999 as the curves shown in Figure 18 suggest.
However, close inspection of the wavelets does reveal
substructure in the signal that could indicate that there were
actually two different perturbations: a weaker, longer-lived one,
extending between the early 1980s and roughly 1995, and a
stronger, shorter-lived anomaly that was strongest in 1999.
Note that this substructure is visible in the data from all three
epochs, with only slight differences that probably represent
differences in the effective wavenumber resolution. This not
only supports the reality of these particular temporal trends, but
also demonstrates how much information these waves contain
about the recent history of perturbations on the ring.
The region around W84.82 shown in Figure 19 reveals a

considerably more complicated perturbation history. First of
all, all three epochs show evidence of a perturbation around
833°.5 day−1 that rapidly grew in the mid-1990s to a peak value
of around 120 cm2 s−2 in 1999, before fading away over the
next few years. However, the later Cassini data show that a
signal at this same frequency reappeared and again reached a
maximum perturbation amplitude of around 120 cm2 s−2 in
2008, before starting to fade again. Furthermore, besides the
very strong signal at 833°.5 day−1, additional wave signals can
be seen at initial pattern speeds between 833°.7 and
834°.1 day−1, which generally have amplitudes of around
30–40 cm2 s−2. The earliest of these weaker signals occurs
around 833°.7 day−1 in the 1980s, and is most clear in the data
from Epochs 1 and 2. Then, in the 1990s, there appear to be
four or five wave signals with comparable strength between
833°.7 and 834°.1 day−1. Finally, the data from Epochs 2 and 3
show a weak wave signal around 833°.7 day−1 that is strongest
around 2005, when the 833°.5 day−1 signal is weakest.

Figure 18. The results of the wavelet analysis of the region around wave W84.86 in the same format as Figure 15. For all three epochs, there is a clear peak in the
perturbation amplitude at a pattern speed of 833°. 0 day−1 that started sometime in the 1980s, reached a peak value of around 70 cm2 s−2 in 1999, and then dissipated
around 2003.
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This region therefore provides evidence for multiple short-
lived signatures. Furthermore, it appears that in this region the
strongest perturbations occurred around 1999, but a larger
number of somewhat weaker perturbations occurred in the
decade before this, and one strong perturbation occurred about
a decade later.

4.2. A Long-term Perturbation with a Drifting Pattern Speed
around 810° day−1 and 2430° day−1

In stark contrast to the patterns between 832° and
834° day−1, the perturbation around 810° day−1 responsible
for the wave designated W86.40 has apparently existed for
many decades. However, as shown in Figure 20, the pattern
speed of this perturbation has steadily increased from 810° to
810°.5 day−1 between 1970 and 2010. Note that this relatively
steady shift in pattern speed extends over a time period greater
than a Saturn year, so this drift cannot be attributed to seasonal
changes in Saturn’s atmosphere.

In addition to the rather steady evolution in pattern speed, the
data from the three epochs also show very consistent variations in
the amplitude of the pattern. First of all, the perturbation amplitude
seems to decline from around 50 cm2 s−2 in the 1970s to around
30 cm2 s−2 around 1988. The perturbation amplitude then grows
back to around 50 cm2 s−2 in the early 1990s. This is followed by
a short reduction in the perturbation strength around 1997 that
appears as a relatively narrow vertical gap in the two-dimensional
maps at 810°.25 day−1, but is not well resolved in the curves
showing peak signals due to the finite vertical extent of the signal
band. Finally, the signal grows again to a broad peak of around
100 cm2 s−2 sometime in the 2000s, before it starts to decay one
last time.

Surprisingly, the trends in pattern speed and perturbation
amplitude seen in the m= 3 wave W86.40 are very similar to
the trends seen in the m=−1 wave W85.67 shown in

Figure 21. First of all, the pattern speed associated with this wave
also steadily increases with time between 1970 and 2010, going
from a bit under 2430° to about 2431°.5 day−1, so over these four
decades the pattern speed of this perturbation is almost exactly three
times the pattern speed of the perturbation responsible for W86.40
(and any small discrepancies in this relationship can potentially be
explained by small differences in the local surface mass density).
Turning to the perturbation amplitudes, we can note that the curves
derived from different epochs are less consistent in this case than
they were for W86.40, which suggests that the normalization curve
that works well for the previous m= 3 waves is not quite as
appropriate for this particular wave. However, close inspection of
the wavelets still shows evidence for local minima in the
perturbation amplitudes around 1990 and 1997. Note that while
the 1997 minima are fairly clear in the Epoch 1 and 2 data, the 1990
minima are less clear than they are in the 810° day−1 wave, because
the m=−1 waves propagate in the opposite direction as the pattern
speed is changing, which makes the waves generated at different
times more likely to overlap each other (see also Figure 11).
W85.67 is the only one of the waves discussed here that was

also observed by the Voyager spacecraft (Rosen et al. 1991), and
so in Figure 22 we include a wavelet map derived from the
Voyager Radio Science Subsystem (RSS) occultation profile
available on the Planetary Data System Ring-Moon Systems Node
with a nominal resolution of 200m. Of course, with a single
occultation, we cannot compute the power ratio, but we can still
use the wavelet transform of these occultation data to estimate Aw
and the corresponding gravitational perturbation F¢m. As shown in
Figure 22, the Voyager data are also consistent with a steadily
increasing pattern speed over time, and the pattern speed in 1970 is
around 2430° day−1, which matches the Cassini observations. We
can therefore say that a perturbation with a steadily increasing
pattern speed (2429°.5 day−1 < Ωp< 2431°.5 day−1) has existed
for at least 50 yr, from 1960 through 2010.

Figure 19. The results of the wavelet analysis of the region around wave W84.82 in the same format as Figure 15. The strongest signals here are around 833°. 5 day−1.
For all three epochs, we see a signal in the perturbation amplitude that first appeared in the late 1990s, before reaching a peak of around 120 cm2 s−2 in 1999. This
signal faded significantly in the early 2000s, but the data from Epochs 2 and 3 show that it reappeared a few years later, probably peaking again in 2008. In addition to
these particularly strong signals, there is also a series of weaker signals between 833°. 7 and 834°. 1 day−1 that appear to have been most active in the 1990s, and other
signals around 833°. 7 day−1 that were most active in the 1980s and early 2000s.
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If we use the same normalization curves as we have used for
the m= 3 waves on all of these profiles, we find an estimated
perturbation amplitude in the 1980s from the Cassini data that
is well below that observed in the Voyager data. This suggests
that the normalization curve derived from the Mimas 6:2 wave
is not exactly appropriate for this wave. After some
experimentation, we found that if we scaled the normalization
curve in time by a factor of 80% (i.e., reducing the effective

dissipation time to around 29 yr), this not only improved the
match between the Cassini and Voyager estimates of the
perturbation strength in the 1970s, but also improved the match
among the various Cassini epochs. With this revised normal-
ization, it appears that the perturbation amplitude was
substantially higher in the 1970s and 1980s than it has been
more recently. The Voyager data also indicate that the
perturbation was significantly weaker before 1960. However,

Figure 20. The results of the wavelet analysis of the region around the m = 3 wave W86.40 in the same format as Figure 15. In this case, there appears to be a single
perturbation that has existed since 1970 and whose pattern speed has steadily increased over four decades from 810° to 810°. 5 day−1. Note that the amplitude of the
perturbation has changed substantially over time, decreasing to a minimum of around 30 cm2 s−2 around 1990, rising to a value of around 50 cm2 s−2 around 1994,
then falling briefly again before reaching a maximum of around 100 cm2 s−2 in the mid-2000s.

Figure 21. The results of the wavelet analysis of the region around the m = −1 wave W85.67 in the same format as Figure 15. These data show evidence of a
continuous disturbance whose pattern speed has steadily changed between 2430° and 2431°. 5 day−1 between 1970 and 2010. Note that the amplitudes of the
perturbations derived from the different epochs are more discordant than those shown in Figure 20, indicating that the normalization model may not be ideal here.
Even so, one can see local minima in the perturbation amplitudes around 1990 and 1997 that are very similar to those seen in Figure 20, indicating that these waves
may share a common origin.
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this edge probably actually reflects the finite spatial resolution
of the Voyager radio occultation experiment, and so we cannot
currently make any firm conclusions about the strength of this
perturbation prior to 1960.

The broader span of the pattern speeds in Figure 22 also
reveals that, in addition to the perturbation with the steadily
increasing pattern speed, there are also several weaker signals
in the 1970s through the early 1990s at pattern speeds between
2427° and 2430° day−1 that can be seen most clearly in the
power ratios. These signals are rather patchy, and their
locations are not always repeatable among the various epochs,
which is similar to the weak m= 3 signals around 817° day−1

discussed below.
In summary, the similar trends in the pattern speeds and the

coincident minima in the perturbation amplitudes around 1990
and 1997 strongly suggest that W86.40 and W85.67 are created
by the same structure in Saturn’s gravitational field. This
connection is also supported by the fact that the pattern speed
of the m=−1 pattern is always three times the pattern speed of
the m= 3 pattern, which means the frequency of the two
perturbations for an inertially fixed observer ω= |m|Ωp is the
same for both waves. However, it is important to keep in mind
that there are also important differences between the two
signals. First of all, the amplitude of the m= 3 perturbation
seems to have generally increased over time since the 1980s,
while the amplitude of the m=−1 perturbation has either
decreased (if the normalization used in Figure 22 is correct) or
stayed roughly constant (if the normalization used in Figure 21
is more accurate). Also, there are no secondary perturbations
around the m= 3 pattern like there are around the m=−1
pattern.

4.3. Persistent and Transient Disturbances around 808° day−1

Figure 23 shows the wavelet analysis of a region that contains
the wave features identified by Hedman & Nicholson (2014)

as W86.58 and W86.59. The most prominent and persistent
signals in this region are between 807°.6 and 807°.7 day−1, which
correspond to the wave W86.59. The signals in this region
appear to have multiple components with amplitudes around 50
cm2 s−2.9 In Epochs 2 and 3, there appear to be two closely
spaced signals separated by only 0°.05 day−1 prior to 1995.
More recently, the amplitude of the signal may oscillate
between 50 and 70 cm2 s−2 over timescales of about a decade.
Despite this variability, the amplitude and pattern speed of this
particular structure appears to be more stable than any of the
perturbations considered thus far.
By contrast, between 807°.9 and 808°.4 day−1, there are

series of weaker and more transient perturbations. The most
prominent of these signals are of order 40 cm2 s−2 and include
patches at around 807°.9 day−1 in 1995 and 2000, as well as
another patch around 808°.1 day−1 in 2004. Weaker signals
between 808°.2 and 808°.4 day−1 are seen in the 1990s, and
there may also be a weak signal around 808°.2 day−1 in 1980.

4.4. Weak Transient Perturbations around 817° day−1

Turning to the weaker signals around 817° day−1 (i.e., around
85,900 km in radius), Figure 24 shows that there are no obvious
signals stronger than 30 cm2 s−2 in this region. However, there
are patchy signals in max distributed between 816°.5 and
817°.3 day−1. Most of these signals appear to have been active
between 1980 and 2000. The one potential exception is a signal
in 817°.2 day−1 that might have been active in 2008, which is
only seen in the Epoch 3 data.

Figure 22. The results of the wavelet analysis of an extended region around the m = −1 wave W85.67 in the same format as Figure 15, except that it includes data
from the Voyager RSS occultation, and the amplitudes are normalized using a template scaled by 80% in elapsed time. With this normalization, the amplitude of the
perturbation appears to have declined over the past four decades. Also, the Voyager data allows us to extend the time evolution of this perturbation back to 1960. Also
note that weaker signals can be seen between 2427° and 2430° day−1 in the 1980s and 1990s.

9 A more intense signal around 807°. 6 day−1 seen only in the Epoch 3 wavelet
map, which causes the estimated perturbation potential amplitude to climb
above 100 cm2 s−2, is not a real m = 3 signal because it corresponds to a low
value of max .
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4.5. m= 3 Wave Signals outside of Plateaux

Finally, we can consider the m= 3 wave signatures found
outside the plateaux. Note that unlike the more complex signatures
found inside the various plateaux, these features are more
consistent with individual waves, and will therefore be designated
as such based on their radial locations within the rings, consistent
with prior work (Hedman & Nicholson 2013, 2014; French et al.
2016, 2019; Hedman et al. 2019; French et al. 2021).

First of all, Figure 25 shows that between 804°.5 and
805°.0 day−1 there are two discrete wave signals that are located

at radii around 86,800 km, just outside the rightmost plateau (P7)
in Figure 17. The stronger one, at 804°.6 day−1, is designated
W86.81, while the weaker signal at 804°.8 day−1 is designated
W86.79. There are no obvious variations in the pattern speeds of
these structures. The peak perturbation amplitudes for W86.81 are
consistently around 100 cm2 s−2, while those from W86.79 are
closer to 50–60 cm2 s−2, which is close to the background
variations in this region. For W86.81, the perturbation amplitude
appears to increase over time, but close inspection of the trends
indicates that this increase happens at different times for the

Figure 23. The results of the wavelet analysis applied to the region around W86.58 and W86.59 in the same format as Figure 15. In this case, the more prominent and
persistent signal is around 807°. 6 day−1, which may have subcomponents and variations over time. In addition, weaker and more transient signals can be seen in the
1990s through early 2000s between 807°. 9 and 808°. 4 day−1.

Figure 24. The results of the wavelet analysis on the perturbations between 816°. 5 and 817°. 3 day−1 in the same format as Figure 15. In this case, there is not much
visible in the perturbation amplitude, but patchy signals can be seen in the power ratio.
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different epochs, which is inconsistent with a true change in the
perturbation amplitude. Instead, these apparent variations likely
arise because waves dissipate faster outside of the plateaux than
they do inside the plateaux, causing the estimated signals to
artificially decay in the past.

Ideally, we could use density waves outside the plateaux to
derive normalization curves for these features, but there are no
known m= 3 waves outside of the plateaux that can be used for
this purpose. We will therefore just highlight that the
amplitudes of these perturbations are less reliable than those
for waves found inside the plateaux. More specifically, since
dissipation seems to be stronger outside of the plateaux,
the perturbation amplitudes in these regions are likely
underestimated.

Moving on, Figures 26 and 27 show similar plots for the
waves with pattern speeds around 812°.6 and 813°.5 day−1

located around 86,200 km and interior to the outermost plateau
(P7) in Figure 17. We designate these features as W86.25 and
W86.18, respectively. The signal from W86.25 is very similar
to that from W86.81, with a constant pattern speed and a
perturbation amplitude that shows an artificial trend over time
due to an inappropriate damping model. The peak signal
associated with W86.25 is around 70 cm2 s−2, and therefore is
a bit below that of W86.81 and a bit above that of W86.79. By
contrast, the signal from W86.18 is near the limit of detection at
50 cm2 s−2, and is only clearly detected in the Epoch 2 data.
These data therefore only provide marginal evidence for this
particular signal. Follow-up examinations of stellar occulta-
tions involving the star α Orionis that have high signal-to-noise
in the low optical depth regions outside of the plateaux10 also
reveal a weak wave signal at this location. This suggests that
this is probably a real ring feature that could be better

quantified with a future dedicated analysis of only the
occultations with the best signal-to-noise in these regions.
Finally, Figure 28 shows a clear signal at 842°.0 day−1

located around 84,260 km, interior to the innermost plateau
(P5) in Figure 17, which we designate W84.26. This pattern
has a consistent perturbation amplitude of 80 cm2 s−2, but in
this case the variations in the perturbation amplitude over time
are more consistent with each other. This suggests that this is
probably a transient perturbation that appeared in the late 1990s
and reached its peak strength around 2005, before decay-
ing away.

5. Discussion

The above analysis documents the history of multiple
anomalies in Saturn’s gravitational field with a range of
different amplitudes and pattern speeds. Figure 29 provides a
high-level summary of the m= 3 perturbations, and compares
these to Saturn’s observed winds, critical times in Saturn’s
seasonal cycle, and the rotation rates of two major storms
observed to have formed in 1990 and 2010. The similarity of
the pattern speeds of the m= 3 perturbations to the range of
rotation rates associated with Saturn’s winds still supports the
idea that something inside Saturn is producing these gravita-
tional anomalies. Furthermore, the observed variations in the
amplitudes and/or pattern speeds of the perturbations over
timescales of years to decades suggests that these gravitational
anomalies are generated by transient phenomena inside the
planet. Possible sources of these gravitational anomalies
include localized atmospheric structures like storms or vortices
carried around by Saturn’s winds and more global oscillations
and waves that propagate sufficiently slowly in a frame rotating
with the planet. However, there are still substantial uncertain-
ties regarding both the magnitudes and the temporal variability
of the gravitational anomalies associated with either of these
structures, and detailed modeling of these phenomena is
beyond the scope of this report. Instead, we will simply

Figure 25. The results of the wavelet analysis of the waves W86.81 and W86.79 in the same format as Figure 15. In this region, all three epochs contain a signal at
around 804°. 6 day−1 with a relatively constant pattern speed, which we identify with the wave W86.81. Another, weaker signal is seen at 804°. 8 day−1, which
corresponds to the wave W86.79.

10 The high signal-to-noise in these regions was due to the occultations
occurring at low ring opening angles (Nicholson et al. 2020). Unfortunately,
this also meant that the plateaux were nearly opaque during these occultations,
so they could not be included in the full wavelet analysis.
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highlight aspects of the observed amplitudes and rotation rates
that will be useful for such efforts. In addition, we will discuss
how the observed connections between the W86.40 and
W85.67 waves indicate that one of the structures inside the
planet may be modulated by solar tides.

5.1. Amplitudes

The gravitational anomalies required to produce the waves
examined here are not the strongest anomalies in the planet’s
gravitational field. The gravitational potential perturbations
required to produce the observed wave signatures are between

50 and 150 cm2 s−2. These potentials would produce accelera-
tions near Saturn’s surface of order –F¢ = ´ -R 0.8 2.5 10m s

10

m s−2. This is orders of magnitude less than the ∼10−6 m s−2

unexplained variations in the accelerations experienced by the
Cassini spacecraft during its multiple close passages by Saturn
(Iess et al. 2019), and is much smaller than the ∼5× 10−8

m s−2 variations seen in the accelerations of the Juno
spacecraft, which might reflect storms or oscillations inside
Jupiter (Durante et al. 2020). Thus, these anomalies are only
responsible for a small fraction of the structure in Saturn’s
gravitational field.

Figure 26. The results of the wavelet analysis of the wave W86.25 in the same format as Figure 15. This region contains a wave signal with a pattern speed of around
812°. 6 day−1 during all three epochs.

Figure 27. The results of the wavelet analysis of the wave W86.18 in the same format as Figure 15. This region contains a weak wave signal with a pattern speed of
around 813°. 5 day−1, which is most obvious in the Epoch 2 data.
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If these anomalies were due to compact regions of enhanced
density carried around by Saturn’s winds, then the total mass of
these regions would be of order F¢ R Gm S (see Equation (62)
above), which for F¢ = 100m cm2 s−2 is only around 1015 kg
(comparable to an icy satellite with a diameter of about
10 km). This is consistent with prior estimates (Hedman &
Nicholson 2014), but it is not yet clear whether such a mass
enhancement could be supported inside a fluid planet like
Saturn. Indeed, recent work has shown that the gravitational
signatures of large storms are better modeled as a dipolar
density anomaly consisting of an overdense region sitting on
top of an underdense region (Parisi et al. 2020, 2021). The
gravitational potential perturbation generated by such a system
would be of order Gd RM S

2, where dM is the mass dipole
moment associated with the storm. Producing a potential
perturbation of order 100 cm2 s−2 would require a structure
with a dipole moment of order 5× 1023 kg m. This is the same
order of magnitude as a recent estimate of the dipole moment of
Jupiter’s Great Red Spot, based on the observed accelerations
of the Juno Spacecraft as it flew over that storm (Parisi et al.
2021). This may mean that storms in Saturn’s atmosphere
could potentially generate at least some of the waves in the
rings, although further work is needed to ascertain whether it is
likely that suitably intense and deep storms exist in Saturn.

Alternatively, these gravitational waves could be generated
by global oscillations with suitably strong m= 3 components
and pattern speeds close to the planet’s bulk rotation rate. Giant
planets are expected to have a complex spectrum of inertial
and/or gravito-inertial modes with suitable pattern speeds that
are currently being investigated in part because of their
potential effects on giant planets’ tidal response and dissipation
(Barker et al. 2016; Fuller et al. 2016; Ogilvie 2020; Lin &
Ogilvie 2021).11 These structures may even exhibit some

amount of time variability similar to the observed gravitational
anomalies (Barker & Lithwick 2013; Barker 2016). However,
in order for these sorts of global oscillations to produce
detectable ring waves, they would have to generate perturba-
tions in the planet’s gravitational potential comparable to those
associated with the fundamental normal modes or mixed
fundamental and gravitational normal modes responsible
for several other waves in the C ring (Fuller 2014;
Hedman & Nicholson 2014; French et al. 2016; Hedman &
Nicholson 2016; Dewberry et al. 2021; Mankovich & Fuller
2021). While the relative amplitudes of the various modes
inside giant planets is currently an active area of research
(Wu 2005; Markham & Stevenson 2018; Wu & Lithwick 2019;
Markham et al. 2020; Lin & Ogilvie 2021; Dewberry & Lai
2022), we are not aware of any explicit predictions for the
likely range of gravitational signals generated by oscillations
with the pattern speeds of the waves considered here. We
therefore expect that additional work will be needed to
ascertain whether any of these oscillations could produce these
waves.
Another way of determining whether these gravitational

anomalies are due to localized atmospheric features or global
oscillations is by comparing the strengths of gravitational
perturbations with different m-values. Global oscillations can
produce signals with a single azimuthal wavenumber, but mass
anomalies carried around by Saturn’s winds produce gravita-
tional perturbations similar to orbiting satellites, and so should
generate a series of waves with predictable locations and
relative amplitudes (El Moutamid et al. 2016). While there are
hints of wave signals near some of these predicted locations, it
is not yet practical to use these potential signals to help
constrain the sources of the relevant gravitational perturbations,
because the vast majority of these waves generated by localized
atmospheric features should occur in the A and B rings. These
rings have much higher surface mass densities than the C ring,
which makes identifying these waves more difficult, because it
reduces their amplitudes and enhances offsets in their pattern

Figure 28. The results of the wavelet analysis of the wave W84.26 in the same format as Figure 15. This region contains a wave signal at 842° day−1. Note that unlike
the other signals outside the plateaux, the signal is consistently found only after 2000.

11 Rossby waves with m = 3 have also been observed in Saturn’s stratosphere
(Guerlet et al. 2018), but those structures do not involve enough material to
generate sufficiently strong gravitational perturbations.
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speeds. Furthermore, the B ring is nearly opaque, while the A
ring contains many satellite-driven density waves, both of
which complicate isolating the appropriate wave signals.
Comparing any potential wave signals with the C ring
structures considered here is therefore a nontrivial task that
will likely be a productive avenue for future work.

5.2. Pattern Speeds

Turning to the pattern speeds of the signals, it is important to
first note that correlating the overall distribution of the
gravitational signatures with aspects of Saturn’s visible
atmosphere is challenging, because the detectability of
gravitational anomalies depends on local ring properties, with
the plateaux apparently being better able to preserve weaker
signals over a longer period of time than other parts of the
rings. Nevertheless, given that the strongest signals both inside
and outside the plateaux correspond to potential perturbations
around 100 cm2 s−2, Figure 29 most likely provides a
reasonably complete survey of those particular gravitational
anomalies for the time period between 1995 and 2010, and a
more patchy history of weaker signatures.

At first, the overall similarity of the distribution of the
gravitational anomaly pattern speeds to the rotation rates of
Saturn’s winds looks like it would strongly support the idea
that these gravitational signals come from localized atmo-
spheric phenomena like storms. However, closer inspection
reveals that there is surprisingly little correlation between these
strong anomalies in the planet’s gravitational field and the most
dramatic storms observed in its clouds.

While Saturn’s visible cloud structures are usually relatively
subdued compared to Jupiter’s, roughly once each Saturn year
there is a major event that produces large atmospheric
disturbances known as Great White Spots, two of which have

occurred in the last 40 yr (Sánchez-Lavega et al. 2018). One
appeared in Saturn’s equatorial jet in 1990, while the other
appeared at mid-northern latitudes in late 2010 (Sánchez-
Lavega et al. 2018). Given that these are the most obvious
events in Saturn’s atmosphere over the past 40 yr, one might
naturally expect that they would produce strong gravitational
signatures, but this does not seem to be the case.
There is no obvious signature of the 1990 event in the rings.

This discrepancy could potentially be explained by the fact that
the wave generated by this event would have occurred outside
of any plateaux. In these regions, even relatively strong waves
seem to fade away when they are more than 20 yr old, likely
due to enhanced dissipation rates. The signal from the 1990
event might therefore have damped away before Cassini was
able to observe it.
The rotation rates of various components of the 2010 giant

storm were between 808° and 810° day−1 (Sánchez-Lavega
et al. 2018), which is close to two of our strongest waves.
However, attributing either of these gravitational field anoma-
lies to the 2010 event is difficult, because this region contains
multiple patterns that have existed since at least 1980, and
while the intensity of the pattern at 810°.5 day−1 decreased a
few years before 2010, and the intensity of the pattern around
808° day−1 might have begun to rise around that time, there are
not any obvious dramatic changes in the strengths or locations
of these long-lived anomalies that could be attributed to the
2010 event. More detailed modeling of these sorts of outbursts
could reveal that the 2010 event was a brief surface
manifestation of a deep storm that produced the gravitational
asymmetry, but at the moment any connection between the
2010 event and these long-lived gravitational anomalies
appears to be indirect.
Besides the lack of obvious correlations with major atmo-

spheric outbursts, it is also worth noting that some of the

Figure 29. A summary of the history of the anomalies in Saturn’s gravitational field, compared with notable aspects of Saturn’s atmosphere and seasons. The top panel
shows the rotation rates of Saturn’s winds, using data from García-Melendo et al. (2011). The bottom panel shows a grayscale map of the average perturbations in
Saturn’s gravitational field as a function of pattern speed and formation time. For the sake of clarity, signals are only shown where the average power ratio is above a
time-dependent threshold (0.35 before 2004, 0.5 between 2004 and 2008, and 0.7 between 2008 and 2011). The vertical dashed line is the estimate of Saturn’s interior
rotation rate by Mankovich et al. (2019), while the diamonds mark the rotation rates of notable Saturn storms known as “Great White Spots” (Sánchez-Lavega
et al. 2018). The horizontal lines mark Saturn’s solstices and equinoxes.
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gravitational anomaly pattern speeds fall outside the range of
rotation rates in Saturn’s visible winds. In particular, there are
two waves that are generated by perturbations with pattern
speeds of around 804°.7 day−1 (see Section 4.5). These are
substantially slower than the lowest rotation rates associated
with Saturn’s observed winds (García-Melendo et al. 2011), so
if they are to be attributed to discrete storms, they would need
to be in a deep atmospheric layer with winds that differ
substantially from the visible cloud tops.

In this context, it is interesting to note that the anomalies
responsible for the observed waves can be divided into two broad
classes, based on their appearance in the maps shown in Section 4.
One class consists of relatively transient features lasting less than a
decade (like the ones around 833° day−1), with the other
containing more persistent anomalies that appear to last for
several decades (like the ones at 807°.6 and 810° day−1). Of
course, such a classification is more challenging to apply to
weaker features, but we can note that all of the signals with pattern
speeds above 815° day−1 appear to be transient. By contrast, for
pattern speeds below 815° day−1, clearly transient signals are only
found between 807°.6 and 808°.5 day−1 (see Figure 23). The rest
of the signals are either certainly long-lived (e.g., the ones at
807°.5 and 810° day−1) or are potentially long-lived features
found outside the plateaux (e.g., the signals around 805° and
813° day−1, although difficulties in properly modeling the wave
dissipation in these regions makes this identification less certain).

Interestingly, the distribution of transient features between
808° and 842° day−1 matches the range of rotation rates seen in
Saturn’s visible winds. By contrast, the more persistent patterns
all have pattern speeds substantially less than the planet’s bulk
rotation rate of 818° day−1 (Mankovich et al. 2019). This could
indicate that the transient features are due to relatively shallow
atmospheric phenomena that are carried around the planet at
roughly the same rate as the visible winds, while the more
persistent features are from a deeper layer whose dynamics and
rotation state are distinct from the visible clouds. Such a finding
might be consistent with recent measurements of the static
gravity field that indicate the planet contains a subcorotating
region at moderate depths (Iess et al. 2019), but much more
work is needed to rigorously evaluate this idea. Alternatively, the
longer-lived structures could represent global oscillations with
pattern speeds that are slightly slower than the planet’s bulk
rotation rate, such as inertial and gravito-inertial waves (Barker
et al. 2016; Ogilvie 2020; Lin & Ogilvie 2021; Saio et al. 2021).

We can also note that the variations in both the amplitudes
and pattern speeds of these gravitational anomalies provide yet
another means of better constraining their origins. On Jupiter,
both the sizes and drift rates of long-lived storms like the Great
Red Spot have been observed to change over timescales of
years to decades (Simon et al. 2018; Barrado-Izagirre et al.
2021; Wong et al. 2021; Morales-Juberías et al. 2022), and the
variations in these storms’ drift rates around the planet are even
comparable to those found in Saturn’s gravitational anomalies.
Detailed examinations of the evolution of the structures in
Saturn’s atmosphere over the course of the Cassini Mission and
beyond could therefore potentially reveal features with histories
that match some of the signals identified in this work.

5.3. The m=−1 Wave and a Potential Connection with Solar
Tides

The previous discussion has focused on the m= 3 patterns,
but we should not forget that the persistent m= 3 feature with a

pattern speed of around 810° day−1 appears to be associated
with an m=−1 anomaly rotating three times faster. Since this
is the only m= 3 wave with an m=−1 companion, this
anomaly is likely to be a special case. A full understanding of
these waves will likely require detailed dynamical models of
the planet’s interior that are beyond the scope of this paper.
However, comparing the terms in the gravitational potential
required to produce these two waves suggests that solar tides
could be playing an important role.
To illustrate why tidal processes could be relevant to this

system, let us focus on a scenario where the m= 3 waves are
generated by compact storms carried around by Saturn’s winds.
Recall that each wave is generated by a specific term in the
gravitational expansion with the form (∣ ∣( ))l - Wm tcos p .
Hence, the m= 3 wave requires a term in the gravitational
potential that goes like ( )l - W tcos 3 3 3 with Ω3; 810° day−1,
while the m=−1 wave requires a term that goes like

( )l - W tcos 1 with Ω1 ; 2430° day−1. The first term arises
naturally if we consider a compact mass MA moving on a
circular trajectory in Saturn’s equatorial plane at a radius rA and
a rate ΩA, because in this case the distance between the mass
anomaly and a point in the ring at radius r and inertial longitude
λ is

( ) ( )l= + - - Wd r r rr t2 cos . 55A A A
2 2

The corresponding perturbation to the gravitational potential
F¢ = GM dA can therefore be expanded as a power-law series
in ( )l - W tcos A and then rewritten in the following form:

( ) ( ( )) ( )å lF¢ = - W
=

¥GM

r
f r r m tcos , 56A

m
m A A

1

where fm(rA/r) are functions of the ratio rA/r that can be
expressed in terms of Laplace coefficients. For a mass anomaly
carried around by Saturn’s winds, ΩA can easily be around
810° day−1, and so the m= 3 term in this expansion goes like

( )l - W tcos 3 3 A , as desired. Note that if we instead made the
anomaly inside the planet a dipole (cf. Parisi et al. 2020, 2021),
then MA would be replaced by the dipole moment of the
anomaly divided by rA, and the fm functions would be different,
but the overall form of the series would be the same. Either of
these models therefore naturally produces the term in the
potential needed to drive the m= 3 wave.
However, the m= 1 term in this expansion will go like
( )l - W tcos A , and so the pattern speed of the corresponding

wave will be a factor of 3 too small. The m=−1 wave
therefore cannot be easily explained as the result of a constant
mass anomaly moving at a steady rate comparable to the
planet’s rotation. Instead, we would need a mass anomaly
moving around the planet at three times the planet’s spin rate,
which currently seems unlikely.
Now consider the possibility that as the anomaly moves

around the planet, its effective mass MA (or, equivalently, its
dipole moment) can vary with longitude and time. These
variations could correspond to oscillations in the storm’s
vertical position or extent in the planet’s atmosphere. In
principle, such variations could be arbitrarily complex, but for
the sake of simplicity, let us say that they have the following
form:

[ ( ( ))] ( )m l= + - WM M m t1 cos 57A x x x0

31

The Planetary Science Journal, 3:61 (34pp), 2022 March Hedman et al.



for some values of mx and Ωx (note that this corresponds to the
effective anomaly mass varying with longitude in a frame
rotating at the rate Ωx). In this case, the m= 3 term in
Equation (56) becomes:

( )

( ) ( ))

( ) (( ) ( ) )

( ) (( ) ( ) )

¢ l

m
l

m
l

F = - W

+ + - W + W

+ - - W - W

58

GM

r
f r r t

GM

r
f r r m m t

GM

r
f r r m m t

cos 3 3

2
cos 3 3

2
cos 3 3 .

A A

x
A x A x x

x
A x A x x

3
0

3

0
3

0
3

The first term in this expression has the correct form to
produce the m= 3 wave with a pattern speed of ΩA, while the
other two terms will produce waves with different m-numbers
and pattern speeds. More specifically, if we let mx= 2, then the
last term will go like ( ( ) )l - W - W tcos 3 2A x , and so produce
an |m|= 1 wave with a pattern speed of 3ΩA− 2Ωx. Recall that
the pattern speed of the m=−1 wave is close to three times
Saturn’s rotation rate, so this term in the potential will naturally
generate the desired wave, provided that Ωx is sufficiently close
to zero. Furthermore, slow changes in ΩA and M0 will produce
the observed coordinated changes in the pattern speeds and
amplitudes of the two waves, while slow changes in μx allow
the relative amplitudes of the two waves to change over time.

At first, it might seem that mx= 2 and 2Ωx= 3ΩA are rather
arbitrary choices, but in fact these particular parameter values
correspond to tidal distortions in the structure of the planet. In
order to produce an m= 3 wave with pattern speed Ω3 and an
m=−1 wave with pattern speed Ω1, we need the magnitude of
the mass anomaly to go like:

[ ( [ ] )] ( )m l= + - W - WM M t1 cos 2 3 . 59A x0 3 1

This behavior is reminiscent of tidal phenomena, which have
m= 2 structures that rotate slowly relative to inertial space
compared to the planet’s spin rate. We therefore may posit that
as the anomaly moves around the planet, its amplitude is
modified by some aspect of the planet’s internal structure that is
affected by a tidal force.

We can even ascertain which sort of tidal potential is
relevant by evaluating the pattern speed of the tidal term
Ωx= (3Ω3−Ω1)/2. From visual inspection of the maps shown
in Figures 20 and 21, we can see that this difference is much
less than a degree per day, which immediately eliminates tides
due to Saturn’s major moons, which all move around the planet
at speeds of at least several degrees per day. This leaves the
Sun as the most likely source of this term, which from Saturn’s
perspective moves around the planet at only 0°.03 day−1. To
see if this rate is consistent with the observed values of Ω3 and
Ω1, we found the pattern speeds corresponding to the peak
potential perturbation for the m= 3 signals between 809° and
811° day−1 and the m=−1 signals between 2428° and
2432° day−1 for all years between 1996 and 2004 in all three
epochs (when all three epochs have decent signal-to-noise and
consistent values for (3Ω3−Ω1)/2). If we assume a surface
mass density of 1.3 g cm−2 for both waves, then we find that
(3Ω3−Ω1)/2 is around 0°.085 day−1, but this drops to around
0°.050 day−1 if we assume a surface mass density of around
0.7 g cm−2 for the m=−1 wave, consistent with the observa-
tions described above. Besides such systematic uncertainties,
the finite widths of the signals in Figures 20 and 21 suggest that

there are additional uncertainties in the individual pattern
speeds that are of order 0°.05 day−1. A rigorous examination of
these uncertainties is beyond the scope of this report, but even
this rough assessment indicates that the observed values of
Ωx= (3Ω3−Ω1)/2 appear to be reasonably consistent with that
expected for solar tides.
We may therefore suggest that the atmospheric structure

responsible for the 810° day−1 wave has been passing through
a region of Saturn’s atmosphere with a particularly strong
response to solar tides, which somehow modulate the
magnitude of the gravitational anomaly associated with that
structure. The primary challenge for this idea is that the
comparable amplitudes of the potential perturbations associated
with the m= 3 and m=−1 waves imply that the modulation
term μx is of order unity. This means that the perturbation
responsible for the m= 3 wave must undergo substantial
variations in its effective strength as it moves around the planet
and through the tidal bulge. This is not likely to be the case for
a simple mass concentration, since it would require the
anomaly to gain and lose a substantial amount of mass twice
each rotation.
Large changes in the potential perturbation strength could be

possible for more complex structures in the planet. For
example, consider the dipolar model that has recently been
used to model the gravitational perturbations associated with
Jupiter’s Great Red Spot (Parisi et al. 2020, 2021). This model
treats strong storms as a mass excess at one level in the
atmosphere some distance above a comparable mass deficit. If
we imagine the vertical positions of these two layers changed
by different amounts in response to the relevant tidal potential,
then the separation between them would change as they move
around the planet, which would naturally cause the dipole
moment of the anomaly to vary in the appropriate way. The
comparable amplitudes of the two ring waves would then
require that the variations in the separation between the two
mass anomalies be comparable to their average separation.
Similar scenarios could potentially also work with more global
oscillations involving mass concentrations and deficits at
different levels in the atmosphere. In either case, the relevant
structure would need to span an atmospheric layer that has a
strong gradient in its tidal response, which would most likely
involve some sort of resonant interaction with the solar tide
similar to those that have been considered in Earth’s
atmosphere (Zahnle & Walker 1987).
There are two different ways one might attempt to test and

further explore this idea. On the one hand, this model does
predict that there should be a third term in the gravitational
potential of comparable magnitude to the one responsible for
the m=−1 wave. This term is generated by the middle term in
Equation (58), which would produce an m= 5 perturbation in
the gravitational potential with a pattern speed of around
486° day−1, and so generate an m= 5 wave at around 136,400
km from Saturn’s center in the outer A ring. Initial searches of
this region found no evidence for such a wave. However, this is
a ring region with a much higher surface mass density and
many satellite-generated waves, which may obscure this
particular wave signal. The tidal term could also potentially
interact with other terms in the expansion in Equation (56),
producing additional waves that could exist in other ring
regions. However, more work is needed to ascertain whether
the expected signals from these gravitational perturbations are
likely to be detectable in the currently available data.
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A potentially more productive approach for testing this idea
would involve modeling of the two observable signals and
seeing whether they can be generated by realistic atmospheric
structures. Recall that only one m= 3 wave has a corresp-
onding m=−1 wave, and the amplitude of the m=−1 term
appears to have been declining over the past few decades, even
as the amplitude of the m= 3 term has been increasing.
According to the above model, this implies that the tidal
resonance that generates strong gradients in anomaly separa-
tions occurs in a particular part of the atmosphere that is
rotating at 810° day−1. It would therefore be worthwhile to
determine what properties a layer in Saturn’s atmosphere
would need to have (e.g., mean density, scale height, rotation
rate, and relevant resonance frequencies) in order to produce a
tidal resonance at that particular rotation rate and ascertain
whether those layers could also support a suitably strong
gravitational anomaly. Such studies are likely to provide
insights into where these atmospheric structures can be found
and what these structures might be.
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Appendix
Expected Relationships between Wave Amplitudes and

Perturbation Strengths

While there is not yet a complete theory for density waves
generated by time-variable periodic forces, the theory of linear
density waves generated by purely periodic perturbing forces
provides useful insights into the relationship between wave
amplitudes and gravitational perturbation strengths. For these
waves, the asymptotic form of the wave amplitude A in an
optical depth profile12 is typically written in terms of distance
from the resonance radius using the following expression
(Nicholson et al. 1990; Marley & Porco 1993; Tiscareno &
Harris 2018; with the approximation that the local mean motion
is GM rP L

3):
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where σ0 is the local ring surface mass density, rL is the
resonant radius, rD is the characteristic damping length of the
wave, and F¢m is the effective gravitational potential perturba-
tion acting on the ring. Note that this potential is often
expressed in terms of a normalized torque from the resonance
 so using the relationship
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For a first-order resonance with a satellite of mass Ms with
semimajor axis as, the perturbing potential is given by the

expression (Nicholson et al. 1990)
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where α= rL/as and ( )ab m
1 2 is a Laplace coefficient

(Shu 1984; Murray & Dermott 1999). Expressions of a similar
form can be obtained for higher-order satellite resonances
(Tiscareno & Harris 2018). Meanwhile, for a standard
planetary normal mode of degree ℓ and azimuthal wavenumber
m (Marley & Porco 1993),

( ) ( )F¢ = + + F¢m ℓ2 1 , 63m ℓm

where F¢ℓm is the relevant component of the planet’s
gravitational potential due to that normal mode.
Equation (60) can be recast in terms of elapsed time

δt= (r− rL)/vg, making the further approximation that

k GM rL P L
3 . This yields the following expression:
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where tD is a characteristic damping time that depends on the
ring’s kinematic viscosity ν as follows (Shu 1984; Tiscareno
et al. 2007):
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The amplitude of the wave is therefore proportional to F¢m for
all elapsed times or wavenumbers, with a constant of
proportionality that is a function of δt and depends upon σ0,
tD, and |m− 1|. Note that for both the m= 3 and m=−1
waves considered here, |m− 1|= 2, so the amplitude evolution
of both types of wave fragments should be comparable to each
other in regions with similar σ0 and ν. This is why the satellite-
driven waves with m= 3 can be used to estimate the
conversion factors for all of the waves of interest to this study.
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