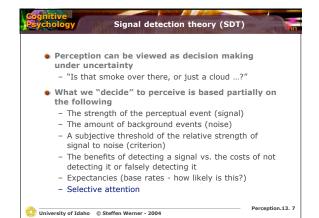
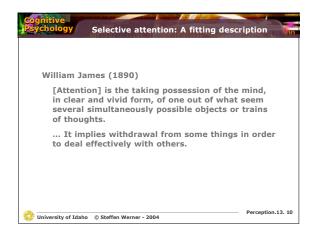
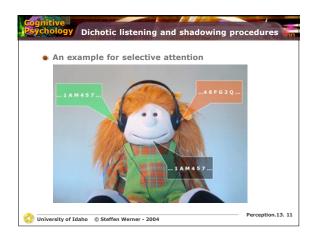


🐝 University of Idaho 💿 Steffen Werner - 2004



1





	eservers eaction	report signal "fire!"	report no signal "no fire"
signal present	fire is starting	hit \$1,000	miss \$100,000
signal absent	nothing	false alarm \$500	correct rejection

	oservers eaction	report signal "guilty!"	report no signal [°] not guilty [°]
signal present	person is guilty	hit good	miss bad
signal absent	person not guilty	false alarm very bad	correct rejection

Selective attention: Dichotic listening (Cherry, 1953)

- People can attend selectively to particular events or objects
- Cherry was the first to systematically investigate how humans attend to one of two simultaneous acoustical events
- His studies showed that...
 - Participants knew little about the content, language, well-formedness, etc. of the unattended message
 - Did notice gross features of the speakers (male / female, differences in tone of voice)
- We will revisit this phenomenon again in the next modules

🗱 University of Idaho 🛛 © Steffen Werner - 2004

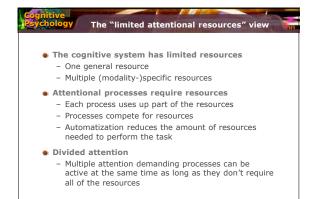
Perception.13. 12

ognitive Sychology Divided attention
 People can perform more than one task at a time (multi-tasking) Driving and reading billboards Walking and chatting with a friend Listening to a web-lecture and watching tv (we will see soon how well this might work;-)
 Attentional resources can be allocated to different tasks depending on the processing needs When driving on an icy road, the driver doesn't read the billboards any more
 Attentional resources are limited Tasks demand different amounts of attention
Perception.13. 13

Controlled vs. automatic processing

Cognitive processes can be differentiated based on the amount of cognitive control they require

- Tying shoe laces vs. imagining to walk home
- Routine tasks vs. solving new problems
- Continuum: total control to totally automatic
- Learning, automatization, proceduralization
 - Most tasks require less control after practice
 - Separate steps are integrated into one - Information is processed in larger units
 - Less step-by-step verification


🗱 University of Idaho 💿 Steffen Werner - 2004

University of Idaho © Steffen Werner - 2004

Perception.13. 14

haracteristic	Controlled	Automatic No effort	
ffort	Intentional		
onscious	Fully available	Usually not	
esources req.	Large demand	Negligible	
/pe of processing	Serially	Parallel	
peed	Slow	fast	
exibility	High	Low	
evel of processing	High (analysis)	Low	
ifficulty	Variable	Variable	

chology Examples of automatization

 Divided attention: Dual tasks (Spelke, Hirst & Neisser, 1976)

University of Idaho © Steffen Werner - 2004

- Practicing reading for comprehension and writing down dictated words
- Practice both tasks 5 days a week (85 sessions)
- Performance
 - In line with expectations, participants were much worse at performing both tasks simultaneously than in isolation
 - After enough practice, this difference vanished
 - Even when semantic categorization was required for dictated words, performance bounced back to normal performance in the dual task

🗱 University of Idaho 💿 Steffen Werner - 2004

Perception.13. 17

Perception.13, 18

Perception.13. 16

hitive The risks of automatization: chology Classification of slips (James Reason, 1990)

- Capture error:
 - automatic process takes over even though a deviation was planned
- Omission/perseveration:
 - because of an interruption steps are missed or repeated
- Data-driven errors:
- Sensory information initiates / modifies the planned action
- Loss-of-activation error:
 After the initiation of an action important information is lost (what am I doing?)

👺 University of Idaho 🛛 © Steffen Werner - 2004