Team Katsura Wind-driven thermal comfort

Gail Brager, Luz Escalante, Matt Gonser, Michael McGlynn, Lindsay Rasmussen

Hypothesis

- Comfort is better in rooms:
 - with openings
 - on the upper floor
 - on the windward side
- How do we define Comfort?
 - Subjective surveys of the 5 team members
 - ASHRAE Thermal Sensation scale
 - Assume -1 to +1 = comfort

Methods – Rooms

- Characterize rooms based on:
 - Windward vs. leeward side of building
 - 1st vs. 2nd floor
 - Openings (windows/doors)
 - Degree of openings (ranked)

Methods – data collection

Physical

• Exterior:

 $_{\odot}$ Wind direction, windward vs. leeward \rightarrow observation of trees blowing

• Interior

○ Temperature → measurement, Kestrel

- \circ Air Velocity \rightarrow observation (consensus)
 - ➢ Scale 1-5 (still to breezy)
- \circ Thermal Sensation \rightarrow observation (individual)

Scale -3 to +3 (cold-neutral-not)

 \circ Comfort \rightarrow assume TS of -1 to +1 = comfortable

<u>Personal</u>

Clothing value

 \circ Estimated (individual) \rightarrow 0.4 to 0.8 clo

Results- Rooms & Average Thermal Sensation

Conclusions

- Comfort was affected less by orientation (windward vs. leeward)
- Comfort was more affected by degree of openness (windows vs. doors, extent open, etc.)
- Windward ventilation was more readily accessible (but on this cold day, there was a little too much)
- Clo value had less of an impact because individual differences and thermal sensitivities were more significant