Section 4. Phenology

Learning outcomes

» understand what phenology is and what
mechanisms are involved

» give examples of how climate change has
affected phenology in species

» explain how changes in phenology affect
species interactions
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Changes in climate that affect phenology
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Southwest Frost-free Season Lengthens
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Observed Changes in Frost-Free Season
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Changes in climate that affect phenology
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Fig. 3 Lastspring —2.2°C freeze date 1961-2000 trend by station. Details as in Fig. 1.
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. Fig. 4 Lastspring —22 °C freeze date departures by year across
Climate Change Ecology 5 the Northern Hemisphere, 1955-2002. Details as in Fig. 2.



Changes in climate that affect phenology
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Fig. 1 Spring indices (SI) first leaf date 1961-2000 trend by station. Trend values are in
Stations with trends significant at the 0.05 level or better are shown with larger symbols ¢

Modeled first leaf date trend

Schwartz et al., Global Change Biology, 2006
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Fig.2 Spring indices (SI) first leaf date departures by year
across the Northern Hemisphere, 1955-2002. Standard error
values ( = 1) are shown by symbols at 5 year intervals. Linear
regression trend shown with a heavy black dashed line. Statistics
for the regression line as shown, with values in parentheses
calculated after equinox date adjustment (Sagarin, 2001).



Projected changes in 2100 under A2 scenario

Climate Variables Affecting Agriculture

Change in Frost-free Season Length Change in Number of Frost Days

Mumber of Days Mumber of Days

National Climate Assessment Draft Report, 2013
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« Chilling «Chilling *Temperature
* Photoperiod *Temperature
» Temperature

Fagus Carpinus Syringa

Not just temperature. Spring development in many ornamental plants from
warm regions, such as lilac (Syringa), is primarily controlled by temperature,
whereas early successional species native to temperate latitudes, such as
hornbeam (Carpinus), only become temperature-sensitive once their chilling
demand has been fulfilled. Late successional taxa, such as beech (Fagus), are
photoperiod controlled, with temperature only exerting a limited modulating
effect once the critical day length has passed. This mechanism prevents such
taxa from sprouting at the “wrong” time.

Korner and Basler, Science, 2010
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Plant development

Common name
Witch-hazel
Red maple
Forsythia
Sugar maple
Norway maple
White ash
Crabapple
Common Broom
Horsechestnut
Common lilac
Beach plum
Black locust
Catalpa
Privet
Elderberry
Purple loosestrife
Sumac
Butterfly bush
Corn (maize)
Dry beans
Sugar Beet
Barley
Wheat (Hard Red)
Oats

Latin name
Hamamelis spp.
Acer rubrum
Forsythia spp.

Acer saccharum
Acer platanoides
Fraxinus americana
Malus spp.

Cytisus scoparius

Aesculus hippocastanum

Syringa vulgaris
Prunus maritima
Robinia pseudoacacia
Catalpa speciosa
Ligustrum spp.
Sambucus canadensis
Lythrum salicaria
Rhus typhina
Buddleia davidii

Zea mays

Phaseolus vulgaris
Beta vulgaris
Hordeum vulgare
Triticum aestivum

Avena sativa

European Corn Borer | Ostrinia nubilalis

“»

Number of growing degree days baseline 10 °C =
begins flowering at <1 GDD
begins flowering at 1-27 GDD
begin flowering at 1-27 GDD
begin flowering at 1-27 GDD
begins flowering at 30-50 GDD
begins flowering at 30-50 GDD
begins flowering at 50-80 GDD
begins flowering at 50-80 GDD
begin flowering at 80-110 GDD
begin flowering at 80-110 GDD
full bloom at 80-110 GDD
begins flowering at 140-160 GDD
begins flowering at 250-330 GDD
begins flowering at 330-400 GDD
begins flowering at 330-400 GDD
begins flowering at 400-450 GDD
begins flowering at 450-500 GDD
begins flowering at 550-650 GDD
2700 GDD to crop maturity
1100-1300 GDD to maturity depending on cultivar and soil conditions
130 GDD to emergence and 1400-1500 GDD to maturity
125-162 GDD to emergence and 1290-1540 GDD to maturity
143-178 GDD to emergence and 1550-1680 GDD to maturity
1500-1750 GDD to maturity

207 - Emergence of first spring moths

en.wikipedia.org/wiki/Growing-

degree _day
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Table Al. Description of climatic variables utilized to construct a model of climate suitability of habitats
for mountain pine beetle populations (adapted from Safranyik et al 1975).

Criterion Description Rationale
P, >305 day-degrees above 5.5 °C A univoltine life cycle synchronized with critical
from 1 August to the end of the seasonal events is essential for beetle survival
growing season (Boughner 1964) (Logan and Powell 2001); 305 day-degrees is the
and >833 day-degrees from 1 minimum heat requirement from peak flight to
August to 31 July 50% egg hatch, and 833 day-degrees is the
minimum required for a population to be
univoltine (adapted from Reid 1962)
> Minimum winter temperatures Under-bark temperatures at or below —40 "C
less than or equal to —40 °C causes 100% mortality within a population
(Safranyik and Linton 1998)
Py Mean maximum August The lower threshold for flight is approximately
temperatures >18.3 °C 18.3 °C (McCambridge 1971); it is assumed that
when the frequency of maximum daily
temperatures >18.3 °C is <5% during August,
the peak of emergence and flight will be
protracted and mass-attack success reduced

P, Sum of precipitation from April Significant increases in populations have been

to June less than long-term average correlated with periods of 2 or more consecutive
years of below-average precipitation over large
areas of western Canada (Thomson and
Shrimpton 1984)

Y, CV of growing-season precipitation  Because P, is defined in terms of deviation from the
average, the CV of precipitation was included; its
numerical values were converted to a relative
scale from 0 to 1 (see the text)

Y, Index of water deficit* Water deficit affects the resistance of lodgepole

pine, as well as subsequent development and
survival of beetle larvae and associated blue-stain
fungi; the water deficit is the yearly sum of
rainfall minus evapotranspiration in months with
mean air temperature >0 °C

*Replaces the water-deficit approximation (Department of Energy, Mines, and Natural Resources 1970) in the
original model of Safranyik et al. (1975).
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Climate factors that
influence bark beetles

Safranyik et al., 2010
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Changes in ice formation, breakup
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Many Plants Need Chilling to Produce Fruit — Reduced Chilling is Projected

1,251-1,500 1,001-1,250  751-1,000 501-750 251-500 0-250
Chilling Hours

National Climate Assessment Draft Report, 2013
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Defining vegetation
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Fig. 2. Schematic of curve fitting mechanism. Land surface temperature (a) is derived from Landsat band 6 and fit with a maximizing envelope sinusoid. Data points

which fall further from this line are subsequently assigned less weight in the phenological fit. Spectrally unmixed green vegetation fraction (b) is fit with a pair of

logistic growth sigmoid functions. Points with the least temperature and spectral error are assigned a greater weight (darker colors in this schematic) in the curve fit. Prof. J. Hicke
Finally, onset and offset are calculated as the half-maxima of the sigmoid curve.



Defining vegetation phenology using satellite
remote sensing: Climatology
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Satellite-derived increases in growing season length

1982-2005

Trend in Growing Season Length
Smith-Downey et al., 2006 (days/decade)
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Tahble 4.2 Studies Showing Earlier Arrival of Spring

Lilac, honeysuckle (F)

Western LUSA

Mortheastern LISA

Washington, DG
Germarny

Switzerland
South-cantral England

Europe (I,
Phenological Gardens)

21 European countrias
Japan

Morthern Europia
United Kingdom
Europe, North America

Narth America (US, MA)
North America (US, IL)
England {Oxfordshire)
North America (US, MA)
Sweden (Often by)

Europe
Australia

Australa

1957-1894

189652001
1959-1993
1970-1989
1851-2000

1951-1898
1954-2000
1959-1996
1969-1808
1971=2000
19532000
1982-2004
1976-1908

Past 30-60
years

1932-1993
1976-2002
1971=2000
1970=-2002
1971-2002

1980-2002
1970-1869

1984-2003

Lilac (F, LU}
Lilac: {F)

100 plant species (F)

10 spring phasas
(F. LU

8 spring phases
(F LLY

385 species {F)

Different spring
phases (F, LU)

F. LU of various plants

Gingko Lifoba (LU)
NDVI

Butterfly appearance

Spring migration of
bird species

Spring arrival, 52 bird

species
Arrival, 8 warbler
species
Leng-distance

migration, 20 species
Spring arrival, 16 bird

species

Spring arrival, 36 bird

species

Egg-laying. 1 species

11 migratory birds

2 spring migratory
birds

—1.5 (llag), 3.5
(honeysuckie)
~3.4(F), —2.6 U)
..1”?

~0.8
=16

=231}

—4.5 days in
1980s

-2.1

=27
=25
-09
-1.5
-281t -3.2
-13t0-4.4

+0.Bt0 —96(0
+2.4 1o —B.6
+0.4 to —6,7
2610 —10.0
-2.1to -3.0
—-1.7to—-486

9 species earliar
arrival

1 species earlier
arrival

Cayan gt al, 2001

Wolfe efal, 2005
Schwartz and Reiter, 2000
Abu-Asab ef al, 2001
Menzel et al, 2003

Defila and Clot, 2001
Fitter and Fitter, 2002

Menzel and Fabian, 1999;
Menzal, 2000; Chmielewski
and Botzer, 2001

Menzel et al, 2006
Matsumoto ef @i, 2003
Delbart et al., 2006

Roy and Sparks, 2000
Crick et al, 1887; Crick and
Sparks, 1999; Dunn and
Winkler, 1999: Inouye & al,
2000; Bairlein and Winkel,
2001; Lehikoinen ef al, 2004

Butler, 2003
Strode, 2003
Cotton, 2003
Ledneva ef al, 2004

Stervander af al, 2005

Both et al, 2004
Green and Pickering, 2002

Chambers ef al, 2005
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Hannah 2011
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Meta-analysis of spring phenology

1. almost all are advances
2. consistent changes across taxa
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Change in spring timing

-30 Individual species

-35
[] [] H B [

Amphibian Bird Butterfly Herbs and grass Shrub Tree . Fly

. Mammal

Fig. 2 Changes in timing of spring events in daysdecade ' for individual spedes grouped by taxonomy or functional type for the
combined dataset. Each bar represents a separate, independent species. Negative values indicate advancement (earlier phenology
through time) while positive values indicate delay (later phenology through time).

Parmesan, 2007
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Spring warming

Later

Earlier

Walther et al., 2002
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Figure 2 Anomalies of different phenological phases in Germany correlate well with
anomalies of mean spring air temperature 7and NAO index (by P. D. Jones, http://
WWW.cru.uea.ac.uk/cru/data/nao.htm). Temperature taken from 35 German climate
stations. Phenalagical phases 1ised: spring arrivalin birds, island of Helgoland, North
Sea; hatching in flycatchers (Ficedula hypoleuca), Northern Germany; and mean onset
of leafunfolding of Aesculus hippocastanum and Betula pendula.

=> biological responses

Colder

Warmer
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Warming and laying date

Relation between spring temperature & blue tit laying date

Spring temperature Laying date
Day of year Day of year
120 120
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FIGURE 4.5
Blue tit egg laying is earlier in warmer years, and progressive warming i resulting in an advance of more
than 10 days in less than two decades. Courtesy of Environmental Data Compendium.
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FIGURE 4.4

Bl 1 [Cyanisies crermk resting on p lranch, From Wiamedia Common

Hannah 2011
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Lilac and honeysuckle first bloom dates

Locations
50°'N
Change in sprlng T

70°N % -

40°'N - 60°N - -
sond T ARSI

3oN 4 (a) s

105 lilac stns ;
30°N
1 1 1
140°'W  130W  1200W  110'W  100W  90'W son 4 MAM temp trend .
GHCN 1950-1997
10'N - - . : =
180° 150°W 120'W o0'W 60'W
50°'N
M [ [ [ e —_——
6 5 -4 3 2 -1 0 1 2 3 4 5 6
deg C

40'N - FiG. 1. Linear trend of spring (Mar-May) temperature over North America between
1950 and 1998. Values plotted are the overall change in trend lines (°C) from begin-
ning to end of record.

so'N 4 (D)

87 honeysuckle stns -
T I I
140°W 130w 120w 110w 100w 90w Cayan et al., Bulletin of Amer. Met. Soc., 2001

Climate Change Ecology 21 Prof. J. Hicke



Lilac and honeysuckle first bloom dates

Spring warming, earlier runoff, earlier blooming
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Lilac and honeysuckle first bloom dates

Analysis of lilac first bloom dates in Spokane
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National Climate Assessment: Biological Responses

Box 2.1. Examples of Observed and Projected Biological Responses to 2. N. Flickers arrive earlier, lay
Climate Change across the United States eggs earlier due to warming

8. RM high-elevation areas:
Flower phenology changes;
declines in flower resources

finad that may affect pollinators;

. 4 earlier growth led to higher
w ‘ 23“‘}_:‘ suscepti_bility to frost;_
o “l}r:‘r';:_.;‘.};.‘ decoupling plant/pollinator
CHorereasty St interactions with earlier plant

phenology compared with
* & 4 insects; all due to warming
p_oro
25 11. Earlier first flowering dates in
40% of 178 plant species
e examined; warming

Ocean
14. Earlier arrival dates of 36% of

44 species of migratory birds;
warming in winter

20. Arrival times of amphibians to
breeding sites:
« autumn breeders: later

-  winter breeders: earlier
Kilometers “%n: * warming nighttime T
ol & g 0 125250 500 750 1,000 Y and precip

Staudinger, et al. Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services:

Technical Input to the 2013 National Climate Assessment, 2012
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Climate change may lead to seasonal mistiming
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Fig. 4. Date of the first sighting of a marmot at RMBL each year from 1976

to 1999 (data missing for 3 years; Julian date). Regression equation is Y = Fig. 5. Date of the first sighting of a marmot plotted against the mean

2,129.839 — 1.009X, r2 = 0.226, P = 0.029. minimum temperature for the month of April in Crested Butte (Julian date).
Regression equation is Y = 171.560 — 2.848X, r2 = 0.596, P = 0.0001.
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Fig. 6. Depth of remaining snowpack on the date of first marmot sighting
at RMBL (Julian date). Y = 2.498X — 4,861.228, P = 0.07.
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Climate change may lead to seasonal mistiming
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Fig. 3. Date of the first sighting of a robin at RMBL each year from 1974 to
1999 (Julian date). The two lines are regressions, including 1974-1980 (A and
dashed line; P=0.109) and data from 1981 to 1999 (Oandsolid line; P= 0.003).

Inouye et al., 2000
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Differential changes among trophic levels

Secondary consumers not advancing as quickly
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Post and Forchhammer (2008) Climate change reduces reproductive
success of an Arctic herbivore through trophic mismatch
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