Section 5: Habitats, Communities, Ecosystems

Reading: Ch 3 (coral bleaching, ocean
acidification, polar bear habitat); Ch 5

earning outcomes

» understand definitions related to ecosystems

« explain how climate change affects biomes,
and what the impacts are to ecosystem
processes

* discuss examples of how climate change
affects tropical, temperate, polar, freshwater,
and marine ecosystems, and what the
consequences of these changes are
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“Ecosystem consequences of wolf
behavioural response to climate”
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Climate defines biomes
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Whittaker Biome Diagram
Originally from RH Whittaker
Communities and Ecosystems
1975;

Modified from RE Ricklefs
The Economy of Nature
2000
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Legend
M Oceans
M Tropical Seasonal Forest/Savanna
B Tropical Rain Foreslt
I Temperate Rain Forest
I Temperate Deciduous Forest
M Taiga (Boreal Forest)
B Temperate Grassland/D

B Subfropical Desert

- Alpine
B Tundra
[ Polar Ice Cap

www.matrietta.edu/~biol/biomes/biome_main.htm
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Biomes 1961-1990

- Boreal Conifer Forest - Temperate Woodland

- Desert |:| Tropical Deciduous Broadleaf Forest
I:l Ice - Tropical Evergreen Broadleaf Forest
|| Temperate Broadleaf Forest - Tropical Grassland

B Temperate Conifer Forest |:| Tropical Woodland

E Temperate Grassland - Tundra and Alpine

- Temperate Mixed Forest |:| Water

Slide courtesy M. Jennings, TNC Source: The Nature Conservancy Climate Change Initiative



Biomes 2071 - 2100, A1B Emission Scenario

- Temperate Woodland
|:| Tropical Deciduous Broadleaf Forest
- Tropical Evergreen Broadleaf Forest

|| Temperate Broadleaf Forest [ | Tropical Grassland
B Temperate Conifer Forest |:| Tropical Woodland
E Temperate Grassland - Tundra and Alpine

- Temperate Mixed Forest |:| Water

Slide courtesy M. Jennings, TNC Source: The Nature Conservancy Climate Change Initiative



Uncertainty in projected future shifts of biomes:
LPJ model, two climate change scenarios
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Figure 4.3. Projected appraciable changes in terrastrial ecasystams by 2100 relative to 2000 as simulated by DGVM LPJ (Sich et al, 2003; Gerten
o al, 2004) for two SRES emissions scananios (Nakidenovié ef al, 2000) forcing wo climate models: (@) HadCM3 A2, [b) ECHAMS B7 (Lucht of al,
2006; Schaphotf et al., 2006). Changes are considared appreciable and are only shown If they axceed 20% of the area of a simulated gnid cell (see
Figure 4.2 for further explanations).
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Cascading impacts of changes: Arid ecosystems
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Cascading impacts of changes: Arid ecosystems

Number of colonies Mean Density (indivsiha)
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Evidence for biome shift:
Tree expansion at northern treeline
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Beck et al., 2011
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Evidence for biome shift:
Tree expansion at northern treeline
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Figure 4 (a) Tree cover (Hansen ef al. 2003) compared to mean air temperature in
May—August in 1982-2007 for non-anthropogenic vegetated areas of interior
Alaska, i.e. the mainland north of the Alaska Range and south of the Brooks Range.
Only areas where gross productivity (Prs) shows a deterministic trend from 1982 to
2008 and where there were no wildfires between 1982 and 2007 are shown.
Histograms represent the distribution of (b) temperature and (c) tree cover and
include areas where no trend was detected.

Beck et al., 2011
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Recent shrub expansion in the Arctic

Figure 1. Increasing abundance of shrubs in arctic Alaska. The photographs were taken in 1948 and
2002 at identical locations on the Colville River (68° 57.9' north, 155° 47.4' west). Dark objects are in-
dividual shrubs 1 to 2 meters high and several meters in diameter. Similar changes have been detected 2005
at more than 200 other locations across arctic Alaska where comparative photographs are available.
Photographs: (1948) US Navy, (2002) Ken Tape.

Climate Change Ecology 12 Prof. J. Hicke
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Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

Table 2. Key differences in properties between shrubby and nonshrubby tundra.

Properties Nonshrub tundra Shrub tundra

Snow depth/duration Shallower/shorter Deeper/longer; more snow runoff
Albedo Higher Lower

Summer active-layer depth Deeper Shallower (because of shading)
Summer active-layer temperature Warmer Cooler

Soil temperature Higher in summer, lower in winter Lower in summer, higher in winter
Nutrient (nitrogen) cycling Faster Slower

Carbon cycling Faster Slower

Caribou forage access and quality Higher Lower

Winter CO,, flux Lower Higher

Summer CO,, exchange Lower Higher

CO,, carbon dioxide.

Sturm et al., 2005
Climate Change Ecology 13 Prof. J. Hicke



Impact of biome shift on ecosystem functioning:

Arctic shrub expansion
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Figure 9. The snow—shrub—soil-microbe feedback loop
(based on Sturm et al. 2001 lz
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Impact of biome shift on ecosystem functioning:
Arctic shrub expansion

more soil biological activity
projected in future

Tundra with thin snow. . Wind

Downwind edge of shrub patch

Figure 5. A shrub patch that has created a snowdrift in and downwind of the patch. The snow
on the tundra behind the patch was about one-fifth as deep as the drift. Photograph: Matthew 1 120
Sturm. Days

Figure 7. The Kuparuk Basin, showing a proxy index (number of
days of microbial activity) for subsurface winter biological activity
(a) under present conditions and (b) with projected increases in
shrub growth. The index was computed by summing the number of
days of the winter that the soil surface temperature is at or above

~6 degrees Celsius (‘Taras et al. 2002). Note the strong latitudinal
) S turm et al. 5 2 005 gradient in this index value, Snow depth increases as a function of
Climate Chan ge Ecol ogy 15 vegetation growth, leading to significant increases in the index

value, particularly in the middle and southern part of the basin.



Impact of biome shift on ecosystem functioning

New Mexico Environmental Gradient
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Tropical ecosystems: cloud forests

Projected changes in clouds Effects of dry periods on
animals in cloud forest
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FIGURE 5.4 Monteverde Population Fluctuations Synched to Dry Days.
Iwenty species of frogs and toads disappeared from the Monteverde cloud forest in Costa Rica (first
black bar) after an unusually long run of dry days (solid line). The golden toad (Bufo periglenes) was

Tropical cloud forests form where clouds Intersect mountain slopes (top).
Under climate change or lowland land clearing, lowered relative humidity

al ““"“{i_ﬁ "‘BE_'“E dmﬂs..wlll form higher {Imttum}, reducing he area of locally endemic, 30 its disappearance represented a global extinction, perhaps the first extinction linked
intersection with mountains and decreasing the extent of cloud forest, to climate change. Subsequent long dry spells have caused other frog population crashes since 1987
possibly causing loss of some of the many endemic species found there. (inset). Increasing frequency of dry spells in cloud forest is linked to climate change through the lifting

In this schematic, Increasing relative humnidity and cloud condensation are cloud base effect. Dry periods appear to favor pathogenic growth of the fungus that is the ultimate cause
indicated by shades of orange. Source: Lawton et al., 2001, of death in affected frogs. Reproduced with permission from Nature.

Hannah, 2011
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Temperate forest ecosystems

Shifts in range of ponderosa pine
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FIGURE 5.13 Map of Ponderosa Retreat in Sierras.

Ponderosa pine range has been reduced in the Sierra Nevada mountains of California since 1930.
Upslope movement of montane hardwoods (dominated by Ouercus sp.) has been replacing the lower
range margin of ponderosa pine (left) while temperature has been increasing in the region (right), Upslope
ioss in ponderosa pine is detected by comparing vegetation surveys from the 1930s (Wieslander VTM
survey) to modemn vegetation maps. The area of retreat in freezeline (yellow, right) closely corresponds to
the area of pine loss (red-purple, lefl). Figure courtesy of Jin Thome.
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Current 2030s 2060s 2090s Predictions of

Pinus ponderosa

major tree species
In the West in
response to
climate change

Ponderosa
pine

Western larch

expansions and
contractions

Douglas-fir

Engelmann
spruce

Rehfeldt et al., 2006
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Climate influences regional fire years

Historical Modern
(from tree rings) (from fire atlas)
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Figure 5. Interaction between spring and summer climate for
historical (left) and modern (right) regional fire years.
Circles are proportional to the degree of synchrony
(25 to 57% of sites for historical fires and 81 hato
1,167,458 ha for the fire atlas)

For roughly the past four centuries, regional fire years were ones of
warm springs that were followed by dry summers (Figure 5).

_ Morgan et al., 2008 _
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Early snowmelt and longer, drier summers =>
more large fires

Change in Average Moisture Deficit Large Forest Wildfires
1987-2003 versus 1970-1986 in Years with Early Spring
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Climate is a major driver
of Canadian wildfires
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Figure 5. Ratio of 3 x CO,/1 x CO, arca bumed by Ecozone using the Canadian and Hadley GCMs,
respectively. N/A, not applicable. The area burned model did not work for ecozone 14 with the
Canadian GCM. (Continued on next page.)
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Wildfire: Projections
based on future
climate change

increase in burned
area for 12 C
Increase in
temperature
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Projected future wildfire frequency

+ 0.50

-0.50 century'1

Average of three GCMs

Gonzalez et al., 2010
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Observed tree dieoff from climate change

Global forest cover
| Other wooded regions

® Localities compiled through 2009 (summarized and listed in Allen et al, 2010)
O  Examples not induded in Allen et al, 2010, largely from post-2009 publications
[C] Broad areas described by particular post-2009 publications

IPCC AR5, WG 2, 2013
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Cumulative bark beetle-caused tree mortality (2001)

Bark beetle outbreaks
are widespread and
extensive In western

North America

o

2 - * Cumulative
* Annual

Mortality area (Mha)

Meddens et al., 2012; Hicke et al., 201pof. J. Hicke
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Mountain pine beetle outbreak
Central Colorado

August 2007
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Factors influencing mountain pine beetle epidemics

Factors related to trees:
e presence of host tree
species
e stem density
e stand age
e drought stress on trees

Photo courtesy USDA Forest Service, www.foreﬁbzimages.org

Safranyik et al. 1975; Shore and Safranyik 1992; Carroll et al. 2004; Logan and Powell 2001




Whitebark pine: Ecologically important
A keystone and foundation species

Tty

¢ . ,;\V:’“‘. _' !.( » ". ']
*~*Photo James Mattil
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Whitebark pine: recommended as threatened/endangered
climate white pine blister rust fire suppression

P

mountain pine beetles




Whitebark pine mortality from beetles 1997-2010
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Confidence in model
predictions similar to observations
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1. Climate-beetle relationships
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1. Climate-beetle relationships

Climate Change Ecology
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1. Climate-beetle relationships
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2. Climate influences on recent outbreak
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2. Climate influences on recent outbreak
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Climate Change Ecology
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2. Climate influences on recent outbreak
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3. Estimates of future climate suitability
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For some dieoff types, drought more important

o~

Type 1: [ SR Seais ncgepar Type 3: drought
‘ ‘ | : SR triggers outbreaks

drought, no
biotic agents

= Type 2: drought,
with beetles
present

Type 4.
outbreaks
caused by

multiple factors FeSGS

) Photos: J. A. Hicke; W. R. L. Anderegg; C. D. Allen ]
Climate Change Ecology Background image: Landsat, Google Earth Prof. J. Hicke



Drought: Texas droughtin 2011

Dr. Ron Billings, Texas Forest Service
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Drought: Tree mortality in Texas

U.S. Drought Monitor DPecenber2?, 2011
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Increase in tree mortality rates in old-growth forests

Fig. 1. Locations of the 76 forest
plots in the western United States
and southwestern British Columbia.
Red and blue symbols indicate,
respectively, plots with increasing or
decreasing mortality rates. Symbol
size corresponds to annual fractional
change in mortality rate (smallest
symbol, <0.025 year™*; largest sym-
bol, >0.100 year‘l; the three inter-

) ‘B
—— Pacific Northwest <1000 m
1.5 4 = California . == 1000 to 2000 m
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Fig. 2. Modeled trends in tree mortality rates for (A) regions, (B) elevational class, (C) stem

diameter class, (D) genus, and (E) historical fire return interval class.
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Increase In tree mortality rates in old-growth
forests due to warming (stress, biotic causes)

(a) All causes
0.020 +

0.015 1
Obser\{ed van Mantgem and Stephenson,
mortallty 0.010 Ecology Letters, 2007

0.005 -

0.000 .
(b) Stress and biotic causes

L g Figure 1 Annual tree mortality rates from
o 0.020 300 = )
- 2 1983 to 2004 for 21 permanent forest plots
= | 550 5 ‘I-’" in the Sierra Nevada, California. The thin
Ilkely cause % 0.015 1 T > solid line represents the annual mortality rate
€ s € averaged among plots, with the thick solid
g 0.0101 - 200 8) £ line showing the expected mortality rate
= s (£2 SE, shaded area) from significant
= 0.005 1 - 150 :: (P <0.05 models of the annual trend
5: 0.000 (Table 1). (a) Mean annual mortality rate

for all causes of death increased at 3% per
year (Table 1). (b) Mean annual mortality
rate for stress and biotic causes increased at
0.010 A 3% per year (Table 1). Average water deficit
(dashed line), an index of drought (see text

unlikely
cause 0.005 -

for definiton), predicted changes in the
stress and biotic mortality rate (Table 2). (c)
Mean annual mortality rate for mechanical
causes did not show a significant trend
(Table 1), although Precipg,., (dotted line),

' ' ' ' ' i an index of storm intensity (see text for
1984 1088 1992 1996 2000 2004 definiton), predicted annual variability in the
Year mechanical mortality rate (Table 2).
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Drought: Pinyon pine dieoff in Southwest in 2000s

Photo: Craig D. Allen, USGS




Drought: Pinyon pine dieoff in Southwest in 2000s

Breshears et al., 2011
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Drought: Tree dieoff in Southwest

Warming:
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Drought: Tree dieoff in Southwest

L a warm-season VPD g4 | @
evaporative @ 1.6 e 4 Drought:
demand by = 14 T 2 PFOJECtiOnS of
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forest stress
given climate
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precipitation
Forest Drought
Stress Index
19100 l 19‘50 l QM ‘ 20'50 ‘ 21‘00 Williams et al., Nature Climate

Change, 2012
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Drought: Tree dieoff in Southwest

Tree die-off effects on ecosystem processes and services

Reduction in food for
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Warming leads to longer growing
season but reduced plant growth

Shallower snowpack => 1

160
_ 140
L 120 longer growing season length but
L ger growing g >
31 1% less water availability =>
E g0
{"; 60
= 40 less plant growth (dependence
W 20 on snow melt water) =>
0
less carbon storage (lower Net 3
Ecosystem Productivity)
5
1 — Fig. 2 (a) Relationship between annual GSL and NEP for 9
— years. A significant, negative relationship between GSL and NEP
5 (P=0.04, R>=047, NEP= —2.66 x GSL + 510.51) demonstrate
that longer growing seasons are correlated with lower annual
rates of carbon sequestration by the forest. Vertical error bars
20 | 2002 . .
correspond to 18% randomly generated NEP errors and hori-
10 ! ! L L zontal error bars correspond to error in calculating the start and
140 150 160 170 180 180  end of the growing season. (b) A significant, negative relation-
Grnwing season Iength {days] ship between GSL and SWE (P=0.01, R*=0.61, SWE=
1.08 x GSL + 223.87) demonstrates that years with a longer
2 growing season are correlated with less available snow melt

. water. Horizontal error bars correspond to 1% instrument error.
Hu et al-: Global Change B/ology, 2010 NEF, net ecosystem productivity; GSL, growing season length;

SWE, snow water equivalent.
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Reliance of trees on snow melt water,
not summer precip in this area

20
2006 2007|
from summer
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Fig. 7 Gross primary productivity (GPP) modeled using SIPNET for 2005, 2006, and 2007. Gray areas represent snow contributed GPP
and black areas represent rain contributed GPP. Annual net ecosystem productivity (NEP) for each year is as follows: 2005
(88gCm 2yr 1), 2006 (104gCm 2yr '), and 2007 (98gCm 2yr ).

Hu et al., Global Change Biology, 2010
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Salmon Impacted Across Full Life-Cycle
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Predicted response of bull
trout to warming

+5.0°C

800 m

Rieman et al. 2007
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Trout species respond differently to warming

.  pam
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L Wenger et al. 2011
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Species responses to air temperature, streamflow
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Predictions using future climate projections
Overall: 47% decrease by 2080

(9)
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Vulnerability to Climate Change
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Cutthroat trout risk analysis that includes climate change

Factors influencing risk of losing cutthroat trout populations:

Adding climate change
Persistence I Summer Temperature Winter Flooding Wildfire I
| wewic | Mean Juty T Prodptaan Ceiteal Anderson fuet
Conservation opation mperatre eve Blevation Zone:
Poputabons g.m.m ‘ '?37%“;2'?.2’ :;%% 1970-2000 ‘ 1680-2600 m
'y Yol et
PatchSze ) ( mm ) | BasinType \.-- -
/ \ I «3C T o
«3C
< 10,000 Ha l l
Inconciusive 249 .
/" Shint in Wietar
___,Z_ _\___ SM:““ "“\‘___ _TWB/
—— [ Lengh )/ l _L
§ Ttk Flood Risk Fire Risk
' R
Fsh !iu-m“ <
18 yea \
139278 yes
93139 yos
A «93  m = .
Composite climate
Climate
Population :
Persistence /
FIGURE |.—Schematic showing how the current analysis of population persistence is influenced by climate change risk models
to produce an overall description of population risk.
Williams et al., NAJ Fish. Manag., 2009
Prof. J. Hicke
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Climate Change Ec

Factor 1. Summer temperature
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Figure 3.—Risk of increased summer tempemture within the historic ranges of Bonneville cutthroat trout and Colorado River

cutthroat trout. by subwatershed.
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Cutthroat trout risk analysis that includes climate change

Risk of higher summer
T. above 22° or 24°C
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population) after 3°C
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Williams et al., NAJ Fish.
Manag., 2009
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Cutthroat trout risk analysis that includes climate change
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cutthroat trout, by subwatershed.

Climate Change Ec:

Risk of increased winter floods within the historic ranges of Bonneville cutthroat trout and Colorado River

New Mexica
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dominated watersheds
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Manag., 2009
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Cutthroat trout risk analysis that includes climate change
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Cutthroat trout risk analysis that includes climate change

Composite risk = max of three climate risks
Bonneville subspecies: 73% in high risk
Colorado subspecies: 29% in high risk

More change from flooding, fire than from
summer warming

summer T winter flooding

Bonneville NG olorado River

Williams et al., NAJ Fish. Manag., 2009
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Cutthroat trout risk analysis that includes climate change
Westslope subspecies: 65% in high risk

~ More change from rooding, fire than from summer warming

Upper Columbia
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%> Wyoming
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Climate Change Risk
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FiGure 6.—Composite climate change risk for subwatersheds within the historic range of westslope cutthroat trout
Williams et al., NAJ Fish. Manag., 2009
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Coral bleaching

Hannah, 2011
Climate Change Ecology 67 Prof. J. Hicke



Coral bleaching

FIGURE 3.2 1997 — 1998: A Deadly Year for Corals.

The right panel shows corals bleached in the EI Ni /i 0 event of 1997 — 1998. The left panels show a
single coral head pre- and postbleaching: (a) prebleaching, (b) bleached coral head, (c) partially
recovered coral head, and (d) fully recovered postbleaching. Left Source: Manzello et al., 2007; Right
Source: Courtesy U.S. National Oceanic and Atmospheric Administration.

Hannah, 2011
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Coral bleaching

Marshall, Schuttenberg, 2006

@ No bleaching @ Lowbleaching  ( Moderate bleaching @ Severe bleaching @ Severity unknown
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Ocean acidification

More Battery acid The pH scale
acidic pH =-log, [H*]
Stomach acid, lemon juice
Vinegar, soda X
[H*] = 0.001 mol/L
pH=28
B ANk
Neutral ‘ M Blood | (H*] = 0,000001 mal/
Seawater (8.1%) nH =
Baking soda
e . 'H*] = 0.000000001 mal/L
ilk of magnesia oH=9
More Household bleach
basic

Sodium hydroxide

"Average global surface ocean pH

Figure 1.1 - Diagram of the pH scale, labeled with the average pH values for some
common solutions, including seawater. pH is defined as the negative log of the
hydrogen ion concentration in a solution. Neutral pH is 7.0, solutions that have pH
values < 7.0 are acidic, and those that have pH values > 7.0 are basic. The term ‘ocean
acidification’ refers to the direction of change toward more acidic conditions with
increasing atmospheric CO, concentrations. Like the Richter scale, the pH scale is
logarithmic. This means that a pH of 7 is 10 times more acidic than a pH of 8.

NOAA, State of Washington Report on Ocean Acidification, 2012
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Inc. atm. CO2 leads to inc. H*

CO,

atmospheric
_carbon dioxide

Climate Change Ecology
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Inc. atm. CO2 leads to dec. carbonate ions

CO, + H,O + CO3 > 2HCO;

e » ¢

carbon water carbonate 2 bicarbonate
dioxide ion ions

consumption of carbonate ions impedes calcification

http://pmel.noaa.gov/co2/files/oareaction.jpg
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Ocean acidification

CO, Time Series in the North Pacific
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Figure 1.3 « Time series of atmospheric CO, at Mauna Loa (in ppm; mole fraction

in dry air) and surface ocean pH and pCO, (uatm) at Ocean Station Aloha in

the subtropical North Pacific Ocean. Note that the increase in oceanic CO,

over the last 19 years is consistent with the atmospheric increase within the NOAA, State of Washington Report on
statistical limits of the measurements. Mauna Loa data: Dr. Pieter Tans, NOAA/ Ocean Acidification, 2012

ESRL (http://www.esrl.noaa.gov/gmd/ccgg/trends); HOTS/ALOHA data:

Dr. John Dore, University of Hawaii (http://hahana.soest.hawaii.edu).
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Ocean acidification

History and future of OA at the ocean surface
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Figure 1.4 « Schematic diagram of the changes in pH, CO;%, and CO,queous) Of the
surface oceans under a high CO,emission scenario out to 2100 (after Wolf-Gladrow
et al., 1999). The pH has declined by about 0.1 (equivalent to a hydrogen ion
concentration increase of about 30%) since the beginning of the industrial era.
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NOAA, State of Washington Report on Ocean Acidification, 2012
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Arctic sea ice retreat
Extent in fall (minimum)
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Arctic sea ice retreat

2007: bad year
(2012 worse)

1979-2000 median minimum
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Arctic sea ice retreat
Models do not predict retreat as fast as observed (worrying)

Arctic m— Observations —---- BCCR BCM2.0
September Sea Ice Extent: Observations and Model Runs —-- CCCMACGCM3*  —---- CCCMA CGCMI.1(TE)
10.0. i s —-- CNRM CM3 —---- GISS AOM*
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Figure 1. Arctic September sea ice extent (X 10° kmz) from observations (thick red line) and 13 IPCC AR4 climate
models, together with the multi-model ensemble mean (solid black line) and standard deviation (dotted black line). Models
with more than one ensemble member are indicated with an asterisk. Inset shows 9-year running means.

Stroeve et al., GRL, 2007
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Climate change effects on Antarctic food webs
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FIGURE 5.17 Example of an Antarctic Food Web. Hannah, 2011
Diatoms dependent on sea ice support a diverse food web, including
great whales that feed directly on plankton and several food chains that
have diatoms at their base,
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