Section 10-11: Tools for assessing future impacts

Reading: Hannah Ch 10-11

Learning outcomes

» understand and provide examples of
* laboratory experiments
* fleld experiments
* modeling (various types)
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Laboratory experiments of 1CO2

FIGURE 10.3 Laboratory and Greenhouse Experiments.
Diffusers and enclosures may be used to maintain constant elevated CO, levels, whereas greenhouses or
other warming devices may be used to manipulate temperature. Courtesy of SCHI.
Hannah, 2011
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Effect of 1CO2 for plants with different
photosynthetic pathways
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FIGURE 10.5 Increase in Biomass for Different Categories of Species (Herbaceous and Woody
C4 Plants, C4 Species, and CAM Species).

Graphs show an increase in biomass enhancement ratio, a measure of increase in biomass. Boxplots such
as these indicate the 5th (bottom horizontal ling), 25th (bottom line of box), 50th (midline of box), 75th

(top line of box), and 95th (upper horizontal line) percentile of the distribution. From Poorter, H. and Navas,
M. L. 2003. Piant growth and competition at elevated CO,: On winners, losers and functional groups.

New Phytologist 757, 1/75—-198.

Hannah, 2011
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Effect of 1CO2 diminishes when other
factors (here, competition) are present

When plants have high relative growth rate (RGR), effects
of competition limit effects of COZ2 fertilization
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FIGURE 10.7 Biomass Enhancement for Seven Tropical Plant Species Grown in Isolation and

in a Mixed Community.

The CO. enhancement observed in the isolated trial is not evident in the mixed community.

From Poorter, H. and Navas, M. L. 2003. Plant growth and competition at elevated CO»: On winners,
losers and functional groups. New Phytologist 157, 1/75—196.

Hannah, 2011
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Different field experiment methods

FIGURE 10.9 Active (a) and Passive (b) Warming Experiments.
The active warming devices include the use of infrared warming lamps. Passive warming depends on
blocking of air circulation or intensification of sunlight to create warmth. Passive warming devices are
often simply circles or boxes of glass or clear plastic, which act much like miniature greenhouses but allow
multispecies interactions and have minimal impact on received precipitation. (a) Courtesy of Charles Musil.
(b) From the National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara.

Hannah, 2011
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Different field experiment methods

FIGURE 10.10 Transplantation and Open-top Chamber Experiments.
Transplantation preserves plant—plant interactions and soil properties. It is usually implemented with the
movement of plants embedded in whole soil. Open-top chambers preserve plant and soil relationships
over a limited area. Source: Finnish Forest Research Institute.

Hannah, 2011
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Different field experiment methods

open-top chamber

cover to increase
nighttime infrared
radiation

http://sciencespace-wang.blogspot.com/2011_06_01_archive.html
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Different field experiment methods

Free air CO2 enrichment (FACE) experiments

_—

FIGURE 10.11 Free Air CO, Enrichment (FACE) Experiments.
FACE experiments use massive diffusers to elevate CO, concentrations over a large area. Diffusers are
often arrayed around a central measurement tower. (a) Courtesy of Jeffrey S. Pippen. (b) Courtesy of
Professor Josef Nosberger, Swiss Face Experiment (ETH Zurich). (c) From Brookhaven National Laboratory,

Hannah, 2011
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Responses of ecosystem structure and
function to warming among locations
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FIGURE 10.12 Response to Warming.

The effects of warming on soil moisture, soil respiration, mineralization, and plant productivity are shown
for multiple studies from throughout the world. Measured mean effects at sach studly site are indicated by
open circles; bars indicate 95% confidence intervals, The vertical line indicates no effect. From Rustad

L E., etal 2001. A meta-analysis of the response of soll respiration, net nitrogen minaralization, and
aboveground plant growth fo experimental ecosystem warming. Oscologia 728, 543-562.
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Over time, the growth enhancement of
1C0O2 diminishes
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FIGURE 10.13 Acclimation in Experimental and Natural Settings.

Single-plant experiments seldom span long enough time frames to detect acclimation. Whole-ground
experiments, usually conducted over longer time frames, clearly show the effect of acclimation.

From Idso, S. B. 1999. The long-term response of trees to atmospheric CO. enrichment. Global Change
Biology 5, 493—495, Hannah, 2011
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Field experiments: tree seedling viability

a) Current observed b) Current predicted
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McLane and Aiken,
FiG. 1. Species distribution models depicting whitebark pine's (a) current observed range in British Columbia (BC), Canada, Ecol. Appl.. 2012
(b) current predicted range in BC based on 1961-1990 climate normals, and (¢) 2025 and (d) 2085 future predicted ranges in BC : pp "
based on 1IS92a CGCM1 GAX future<limate scenarios (Flato et al. 2000). The models were created by T. Wang (umpublished
madels) (University of British Columbia), using methods from Hamann and Wang (2006). See Fig. 2 for the 2055 predicted range,
scale, and geographic location. See Appendix A for the model creation methods.
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Field experiments: tree seedling viability
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FiG. 2. Trial locations and provenances relative to the 1990s observed and 2055 predicted whitebark pine species range within
British Columbia, Canada. Of the eight trial locations, two are within and six are north of the current species range. All trial
locations are in areas predicted to be habitable under both present and 2055 climate regimes. The two locations in boldface type,
Whistler and Smithers, are both trial locations and provenances. The predicted species range was created by T. Wang (unpublished
madel) (University of British Columbia), using methods from Hamann and Wang (2006), using the I1S92a CGCM1 GAX future-
climate scenario (Flato et al. 2000). The map scale is accurate in the map center but approximate at the boundaries due to
projection skew.
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Trial locations (black
dots)

Seed sources (white
squares)

McLane and Aiken,
Ecol. Appl., 2012
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Field experiments: tree seedling viability

Results of trials

coldest sites

a = Mortality
40 1 M m Survival

@ Trial location
[ Seed source

Current observed range
Il 2055 predicted range (BC only) "; ’ vash

30 A

0 300 600 km § John Day O [,’]

.

{ \ 20 -

i

FiG. 2. Trial locations and provenances relative to the 1990s observed and 2055 predicted whitebark pine species rang
British Columbia, Canada. Of the eight trial locations, two are within and six are north of the current species range.
locations are in areas predicted to be habitable under both present and 2055 climate regimes. The two locations in boldfs
Whistler and Smithers, are both trial locations and provenances. The predicted species range was created by T. Wang (wunp
model ) (University of British Columbia), using methods from Hamann and Wang (2006), using the 1S92a CGCM1 GAX
climate scenario (Flato et al. 2000). The map scale is accurate in the map center but approximate at the boundaries
projection skew.
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Different field experimental methods

-

Amazon drought
experiment

http://earthobservatory.nasa.gov/Features/
AmazonDrought/stealing_rain3.php, photos
by D. Nepstad

(video)

Climate Change Ecology 14 Prof. J. Hicke



Different field experimental methods

Experiment effectively
reduced rainfall

treatment
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http://earthobservatory.nasa.gov/features/ FiG. 1. Annual rainfall (measured in wet plot) and effective
AmazonDrought/stealing_rain3.php, photos rainfall (rainfall minus water excluded by plastic panels;
by D. Nepstad; Nepstad et al., Ecology, measured in dry plot) during 3.75 years of the throughfall
2007 exclusion experiment.
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FiG. 2. Selected components of the water balance within the wet (W) and dry (D) plots at the Tapajos throughfall exclusion

experiment, showing (a) predawn leaf water potentials averaged across six species (mean * SE; n =13 trees per species, n =4 leaves

per tree) in both plots; (b) plant-available soil water as a percentage of the maximum value (%PAW ., ) for 0-2 m; (c) %PAW .

H for 2-11 m in the soil profile; and (d) daily precipitation. Vertical hatching indicates periods when the throughfall exclusion system
Cllmate Change ECOIOgy was functioning during the wet season.



Reduced soil moisture
led to plant mortality
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SUMO: Survival Mortality experiment in New Mexico
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Figure courtesy N. McDowell, LANL
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Dangers of misinterpreting experiments

LETTER

d0i:10.1038/naterel1014

Warming experiments underpredict plant
phenological responses to climate change

E. M. Wolkovich', B. I. Cook™?, J. M. Allen®, T. M. Crimmins®, J. L. Betancourt®, S. E. Travers’, S. Pau®, J. Regetz®, T. J. Davies®,
N.J. B. Kraft'®"", T, R. Ault, K. Bolmgren'*'*, S, I. Mazer", G. J. McCabe™®, B. J. McGill”7, C. Parmesan'®'?, N, Salamin®#!,
M. D. Schwartz” & E. E. Cleland'
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Figure 2 | Estimates of the flowering and leafing sensitivities. The estimates
from the mixed effects model (presented as mean * s.e.m.), including the
random effects of site and species, show that experiments underpredict the
magnitude of plant responses to interannual temperature variation for all
species sampled (a) and for the species that are common to both the
experimental and the observational data sets (b). The region above the dashed
grey line represents positive sensitivities, meaning that the species’ phenological
events are delayed with warming, whereas the region below the line represents
negative sensitivities, meaning that the species’ events advance with warming.
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Possible explanations

» experiments focused on T, not
on correlated factors that may
drive changes in observed
phenology (sunshine,
snowpack/snowmelt, soll
moisture)

» use of mean annual
temperature

* issues with meta-analyses
(devil is in the details)
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How to develop a species distribution model

Statistical overlay
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Hannah, 2011
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Example application of species distribution model

Climate Change Ecology

Cape Town

5 0 5 101520 25 Killometars
e ™ ™

* Mapped populations
Bl Current I Future

FIGURE 11.8 Example of SDM Output.

SOM output for a protea (pictured) from the Cape Floristic Region of South Africa. Current medeled
range is shown in red, and future modeled range is shown in blue. Known occurrence points for the
species are indicated by black circles, Figure courtesy Guy Midgley.

Hannah, 2011
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Evaluating species distribution models
with historical observations

Pleistocene

l L) niche model
-..'-I I“f

3 Present
G ditrvut
o) istribution

Pleistocene
v distribution

FIGURE 11.9 Backwards and Forwards Modeling of Eastern Mole (Scalopus aquaticus).

(A) SDM created from known Pleistocene occurrences predicts present distribution. (B) SDM created

from known current distribution predicts known fossil occurrences. From Martinez-Meyer, E., et al. 2004.
Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene
extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 1.3, 305-314.

Hannah, 2011
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- SDM example: pikas
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modeled suitable habitat for current climate (gray).
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SDM example: pikas
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SDM example: pikas
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Figure 2. Modeled suitable habitat for American pika for current climate and for climate _ ’
emission/model projections GFDLCM21/B1, CGCM3/A1B, and GFDLCM21/A2. For the 1FOOK, Buotte, Hicke, unpublished
majority of future habitat, more warming leads to a contraction in habitat area upslope (or
disappearance). In the small amount of purple area in the northern Rocky Mountains, the Prof. J. Hicke

GFDLCM21/B1 projection was warmer in the warmest month than the CGCM3/A1B projection.
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SDM example: pikas

Area of habitat and % of current for climate change projections

Thble 4. Habitat area and average patch size for American pika and subspecies for current climate and for three warming projections.

Metric Taxon Current B1 %gchange A1B %change A2 %gchange
Area (km?) Ochotona princeps 316,516 58,743 -81.4% 44 116 -86.1% 5,681 -98.2%
O. p. princeps 185,492 23,020 -87.6% 21,064 -88.6% 560 -99.7%
O. p. schisticeps 32,969 7,702 -76.6% 5,436 -83.5% 3,047 -90.8%
O. o. fenisex 26,013 3,714 -85.7% 3,704 -85.8% 92 -99.6%
O. p. unita 12,754 2,550 -80.0% 1,225 -90.4% 96 -99.2%
O. p. saxatilis 59,288 21,757 -63.3% 12,687 -78.6% 1,886 -96.8%
Average patch
Ochotona princeps 60.82 29.57 -51.4% 20.25 -66.7% 6.774 -88.9%
size (km?)
O. p. princeps 63.68 14.42 -77.4% 10.46 -83.6% 2.79 -95.6%
O. p. schisticeps 25.52 26.84 5.2% 24.16 -5.3% 21.16 -17.1%
O. o. fenisex 28.97 9.52 -67.1% 10.55 -63.6% 3.53 -87.8%
O. p. unita 63.45 34.93 -44.9% 22.69 -64.2% 2.29 -96.4%
O. p. saxatilis 122.5 62.16 -49.3% 33.39 -72.7% 4.1 -96.7%
Trook, Buotte, Hicke, unpublished
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SDM example: pikas

We couldn’t get this work published...why?

 lack of inclusion of important explanatory variables
* necessary habitat
 talus maps of uncertain quality
» presence of subtalus snow or water

« uncertainty about pika’s ability to persist in hot, dry places
* behavioral change

 uncertainty about importance of other factors
* snow cover as insulation
« cold-air drainage through talus slopes

Trook, Buotte, Hicke, unpublished
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Example application of dynamic global
vegetation model

FIGURE 11.2 Global and Regional Vegetation Simulation of a DGVM.

The global distribution of PFTs (top) can be simulated in a coarse-scale DGYM. The same DGYM run at
finer resolution can simulate PFT distribution with many local features resolved (bottom left). Driving the
DGVM with projected future climates from a GCM provides simulation of change in PFT distribution

due to climate change at either global or regional (bottom right) scales. From Ronald P Neilson, USDA

Forest Service.

Hannah, 2011
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Example of an Earth system model
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Example of an Earth system model

Biogeochemical cycles
~ Pholosynthesis BVOCs

www.cesm.ucar.edu/models/cim




Example application of an Earth system model:
climate change impacts on fish catch
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Fig. 1 Change, in percent or °C as noted, from the beginning to the end of the 21st century (2001-2020 and 2081-2100 means) for (a)
primary production (%), (b) small phytoplankton density (%), (c) large phytoplankton density (%), and (d) SST (°C). Biome boundaries
at the beginning and end of the century are marked in gray and red, respectively. Green boxes and letters identify the seven 2° x 2°
regions examined in this article.



Example application of an Earth system model:
climate change impacts on fish catch
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Fig. 2 Annual mean large phytoplankton density (solid) and linear trend line for significant (P < 0.05) fits (dashed) for (a) biome
boundary, (b) biome interior, and (c) California Current (CC) regions. Right-hand axis in b applies only to region E, 20°N, 180°.
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Example application of an Earth system model:
climate change impacts on fish catch
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Fig. 3 Annual mean catch (solid) and linear trend line for significant (P < 0.05) fits (dashed) for (a) biome boundary, (b) biome interior,
and (c) California Current (CC) regions. Right-hand axis in b applies only to region E, 20°N, 180°.
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