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Two Discrete Random Variables
This topic is not covered in the textbook.

The probability mass function (pmf) of a single discrete rv X specifies how much probability mass is placed
on each possible value of X. The joint pmf of two discrete RVs X and Y describes how much probability
mass is placed on each possible pair of values (x, y).

Definition
Let X and Y be two discrete RVs defined on the sample space S of an experiment. The joint probability
mass function p(x, y) is defined for each pair of numbers (x, y) by

p(x, y) = P (X = x and Y = y)

It must be the case that p(x, y) ≥ 0 and ΣxΣyp(x, y) = 1

Discrete Distribution Example
A large insurance agency services a large number of customers who have purchased both a homeowner’s
policy and an automobile policy from the agency. For each type of policy, a deductible is specified; the auto
poilcy has deductibles of $100 or $250, whereas a homeowner’s policy has deductibles of $0, $100 or $200.
Let X = the deductible amount on the auto policy and Let Y = the deductible amount on the homeowner’s
policy. The next slide contains the table distribution.

Find: P (X = 100 and Y = 100) = p(100, 100)
P (Y ≥ 100)

Discrete Distribution Example Data

y

p(x, y) 0 100 200
x 100 0.20 0.10 0.20

250 0.05 0.15 0.30

Discrete Example: Probabilities
P (X = 100 and Y = 100) = p(100, 100) = 0.10

P (Y ≥ 100) = p(100, 100) + p(100, 200) + p(250, 100) + p(250, 200) = 0.1 + 0.2 + 0.15 + 0.3 = 0.75
OR (complement rule)
1− P (Y < 100) = 1− P (Y = 0) = 1− [p(100, 0) + p(250, 0)] = 1− (0.2 + 0.05) = 1− 0.25 = 0.75
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Discrete Marginal Distributions (marginal pmfs)
The marginal probability mass function of X, denoted by pX(x), is given by

pX(x) =
∑

y

p(x, y) ∀ x

Similarly, the marginal probability mass function of Y , denoted by pY (y), is given by

pY (y) =
∑

x

p(x, y) ∀ y

Discrete Example: Marginal Distributions of X and Y

pX(100) =
∑

y p(x, y) = p(100, 0) + p(100, 100) + p(100, 200) = 0.5

pX(250) =
∑

y p(x, y) = p(250, 0) + p(250, 100) + p(250, 200) = 0.5

pY (0) =
∑

x p(x, y) = p(100, 0) + p(250, 0) = 0.25

pY (100) =
∑

x p(x, y) = p(100, 100) + p(250, 100) = 0.25

pY (200) =
∑

x p(x, y) = p(100, 200) + p(250, 200) = 0.5

Discrete Marginal Distributions

pX(x) =

 0.5 x = 100
0.5 x = 250
0 otherwise

pY (y) =


0.25 y = 0
0.25 y = 100
0.5 y = 200
0 otherwise

Independence of X and Y

Two random variables X and Y are independent if for every pair of x and y values,

p(x, y) = pX(x) · pY (y) when X and Y are discrete

If the above are not satisfied for all (x, y), then all X and Y are said to be dependent

Discrete Example: Independence
Are X and Y independent?

? p(100, 100) = pX(100) · pY (100) ?

⇒ 0.1 6= (0.5)(0.25)

No, they are not independent
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Joint Conditional Probabilities
Recall the formula for conditional probability:

P (A|B) = P (A ∩B)
P (B)

The same follows for discrete distributions:

pY |X(y|x) = p(x, y)
pX(x)

Discrete Example: Conditional Probabilities

pY |X(Y = 200|X = 100) = p(100, 200)
pX(100)

= 0.2
0.5 = 2
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Rules of expectation
E(X + b) = E(X) + E(b) = E(X) + b

V (X + b) = V (X) + V (b) = V (X) + 0 = V (X)

E(aX) = aE(X)

V (aX) = a2V (X)

Rules of expectation II
If X and Y are independent random variables:

E(X ± Y ) = EX ± EY

V (X ± Y ) = V X + V Y

E(aX ± bY ) = aEX ± bEY

V (aX ± bY ) = a2V X + b2V Y

Covariance Definition
When two random variables X and Y are not independent, it is frequently of interest to assess how strongly
they are related to one another. The covariance between two RVs X and Y is:

Cov(X,Y ) = E[(X − µX)(Y − µY )] = EXY − (EX)(EY )

For discrete RVs: ∑
x

∑
y

(x− EX)(y − EY )p(x, y)
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Covariance Properties
Covariance

Covariance is a measure of how changes in one variable are associated with changes in a second variable.
Specifically, covariance measures the degree to which two variables are linearly associated. However, it is also
often used informally as a general measure of how monotonically related two variables are.

The major defect in covariance is that although it is a measure of linear dependence, its computed value
depends critically on the units of measurement. However, if we standardize the covariance (by dividing it by
standard deviations), we get a better measure of linear dependence, called correlation.

If X and Y are independent, the covariance of X and Y (Cov(X,Y ) = 0), but it does not hold in reverse.
Just because the covariance is 0 does not mean independence; it could mean they are not linearally related.

Covariance Formulas
Cov(X,Y ) = EXY − (EX)(EY ) where

For discrete RVs:
EXY =

∑
(xyp(x, y))

Discrete Example: Covariance
All products that equal 0 will not be shown in calculation

EXY = (100)(100)(.1) + (100)(200)(.2) + (250)(100)(.15)

+(250)(200)(.3) = 23750

Cov(X,Y ) = 23750− (175)(125) = 1875

Rules of expectation III
If X and Y are dependent random variables:

E(X ± Y ) = EX ± EY

V (X ± Y ) = V X + V Y ± 2COV (X,Y )

E(aX ± bY ) = aEX ± bEY

V (aX ± bY ) = a2V X + b2V Y ± 2abCov(X,Y )

Correlation
This is the standardized version of covariance. Correlation refers to the extent to which two variables have
a linear relationship with each other. Familiar examples of dependent phenomena include the correlation
between the physical statures of parents and their offspring, and the correlation between the demand for a
product and its price. Correlations are useful because they can indicate a predictive relationship that can be
exploited in practice.
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Properties of Correlation
• describes the linear relationship between two quantitative variables X and Y
• −1 ≤ ρ ≤ 1
• There are no units of measurement associated with ρ (and will not change if units of measurement are

changed)
• Makes no distinction between X and Y

Warning!

Correlation is often used in misleading and incorrect ways. The main thing to remember with correlation
is that it implies only that there is an association; it does not mean that X causes Y . The only way to
determine causation is with experimentation.

Formulas
For both continuous and discrete RVs:

Corr(X,Y ) = ρXY = Cov(X,Y )
(SDX)(SDY )

The sample correlation is usually referred to as r

Discrete Example: Covariance
Cov(X,Y ) = 1875, SDX = 75, SDY = 82.9156

ρXY = Cov(X,Y )
(SDX)(SDY ) = 1875

(75)(82.9156) = 0.301511

ρXY = 0.3015, which is close to 0 and positive, indicating that there is a weak, positive linear relationship
between X (auto insurance) and Y (home insurance). Generally, more people that have auto insurance will
also have home insurance through the same company (or at least in this company).
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