Joint Distributions

Module 16
Statistics 251: Statistical Methods
Updated 2019

Two Discrete Random Variables

This topic is not covered in the textbook.
The probability mass function (pmf) of a single discrete rv X specifies how much probability mass is placed on each possible value of X. The joint pmf of two discrete RVs X and Y describes how much probability mass is placed on each possible pair of values (x, y).

Definition

Let X and Y be two discrete RVs defined on the sample space \mathcal{S} of an experiment. The joint probability mass function $p(x, y)$ is defined for each pair of numbers (x, y) by

$$
p(x, y)=P(X=x \text { and } Y=y)
$$

It must be the case that $p(x, y) \geq 0$ and $\Sigma_{x} \Sigma_{y} p(x, y)=1$

Discrete Distribution Example

A large insurance agency services a large number of customers who have purchased both a homeowner's policy and an automobile policy from the agency. For each type of policy, a deductible is specified; the auto poilcy has deductibles of $\$ 100$ or $\$ 250$, whereas a homeowner's policy has deductibles of $\$ 0, \$ 100$ or $\$ 200$. Let $X=$ the deductible amount on the auto policy and Let $Y=$ the deductible amount on the homeowner's policy. The next slide contains the table distribution.

Find: $P(X=100$ and $Y=100)=p(100,100)$
$P(Y \geq 100)$

Discrete Distribution Example Data

		y		
	$p(x, y)$	0	100	200
x	100	0.20	0.10	0.20
	250	0.05	0.15	0.30

Discrete Example: Probabilities

$P(X=100$ and $Y=100)=p(100,100)=0.10$
$P(Y \geq 100)=p(100,100)+p(100,200)+p(250,100)+p(250,200)=0.1+0.2+0.15+0.3=0.75$
OR (complement rule)
$1-P(Y<100)=1-P(Y=0)=1-[p(100,0)+p(250,0)]=1-(0.2+0.05)=1-0.25=0.75$

Discrete Marginal Distributions (marginal pmfs)

The marginal probability mass function of X, denoted by $p_{X}(x)$, is given by

$$
p_{X}(x)=\sum_{y} p(x, y) \forall x
$$

Similarly, the marginal probability mass function of Y, denoted by $p_{Y}(y)$, is given by

$$
p_{Y}(y)=\sum_{x} p(x, y) \forall y
$$

Discrete Example: Marginal Distributions of X and Y

$$
\begin{aligned}
& p_{X}(100)=\sum_{y} p(x, y)=p(100,0)+p(100,100)+p(100,200)=0.5 \\
& p_{X}(250)=\sum_{y} p(x, y)=p(250,0)+p(250,100)+p(250,200)=0.5 \\
& p_{Y}(0)=\sum_{x} p(x, y)=p(100,0)+p(250,0)=0.25 \\
& p_{Y}(100)=\sum_{x} p(x, y)=p(100,100)+p(250,100)=0.25 \\
& p_{Y}(200)=\sum_{x} p(x, y)=p(100,200)+p(250,200)=0.5
\end{aligned}
$$

Discrete Marginal Distributions

$$
\begin{aligned}
& p_{X}(x)= \begin{cases}0.5 & x=100 \\
0.5 & x=250 \\
0 & \text { otherwise }\end{cases} \\
& p_{Y}(y)= \begin{cases}0.25 & y=0 \\
0.25 & y=100 \\
0.5 & y=200 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Independence of X and Y

Two random variables X and Y are independent if for every pair of x and y values,

$$
p(x, y)=p_{X}(x) \cdot p_{Y}(y) \quad \text { when } X \text { and } Y \text { are discrete }
$$

If the above are not satisfied for all (x, y), then all X and Y are said to be dependent

Discrete Example: Independence

Are X and Y independent?

$$
\begin{gathered}
? p(100,100)=p_{X}(100) \cdot p_{Y}(100) ? \\
\Rightarrow 0.1 \neq(0.5)(0.25)
\end{gathered}
$$

No, they are not independent

Joint Conditional Probabilities

Recall the formula for conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

The same follows for discrete distributions:

$$
p_{Y \mid X}(y \mid x)=\frac{p(x, y)}{p_{X}(x)}
$$

Discrete Example: Conditional Probabilities

$$
\begin{gathered}
p_{Y \mid X}(Y=200 \mid X=100)=\frac{p(100,200)}{p_{X}(100)} \\
=\frac{0.2}{0.5}=\frac{2}{5}
\end{gathered}
$$

Rules of expectation

$$
\begin{gathered}
E(X+b)=E(X)+E(b)=E(X)+b \\
V(X+b)=V(X)+V(b)=V(X)+0=V(X) \\
E(a X)=a E(X) \\
V(a X)=a^{2} V(X)
\end{gathered}
$$

Rules of expectation II

If X and Y are independent random variables:

$$
\begin{aligned}
E(X \pm Y) & =E X \pm E Y \\
V(X \pm Y) & =V X+V Y \\
E(a X \pm b Y) & =a E X \pm b E Y \\
V(a X \pm b Y) & =a^{2} V X+b^{2} V Y
\end{aligned}
$$

Covariance Definition

When two random variables X and Y are not independent, it is frequently of interest to assess how strongly they are related to one another. The covariance between two RVs X and Y is:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E X Y-(E X)(E Y)
$$

For discrete RVs:

$$
\sum_{x} \sum_{y}(x-E X)(y-E Y) p(x, y)
$$

Covariance Properties

Covariance

Covariance is a measure of how changes in one variable are associated with changes in a second variable. Specifically, covariance measures the degree to which two variables are linearly associated. However, it is also often used informally as a general measure of how monotonically related two variables are.
The major defect in covariance is that although it is a measure of linear dependence, its computed value depends critically on the units of measurement. However, if we standardize the covariance (by dividing it by standard deviations), we get a better measure of linear dependence, called correlation.

If X and Y are independent, the covariance of X and $Y(\operatorname{Cov}(X, Y)=0)$, but it does not hold in reverse. Just because the covariance is 0 does not mean independence; it could mean they are not linearally related.

Covariance Formulas

$\operatorname{Cov}(X, Y)=E X Y-(E X)(E Y)$ where
For discrete RVs:

$$
E X Y=\sum(x y p(x, y))
$$

Discrete Example: Covariance

All products that equal 0 will not be shown in calculation

$$
\begin{gathered}
E X Y=(100)(100)(.1)+(100)(200)(.2)+(250)(100)(.15) \\
+(250)(200)(.3)=23750 \\
\operatorname{Cov}(X, Y)=23750-(175)(125)=1875
\end{gathered}
$$

Rules of expectation III

If X and Y are dependent random variables:

$$
\begin{gathered}
E(X \pm Y)=E X \pm E Y \\
V(X \pm Y)=V X+V Y \pm 2 \operatorname{COV}(X, Y) \\
E(a X \pm b Y)=a E X \pm b E Y \\
V(a X \pm b Y)=a^{2} V X+b^{2} V Y \pm 2 a b \operatorname{Cov}(X, Y)
\end{gathered}
$$

Correlation

This is the standardized version of covariance. Correlation refers to the extent to which two variables have a linear relationship with each other. Familiar examples of dependent phenomena include the correlation between the physical statures of parents and their offspring, and the correlation between the demand for a product and its price. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice.

Properties of Correlation

- describes the linear relationship between two quantitative variables X and Y
- $-1 \leq \rho \leq 1$
- There are no units of measurement associated with ρ (and will not change if units of measurement are changed)
- Makes no distinction between X and Y

Warning!

Correlation is often used in misleading and incorrect ways. The main thing to remember with correlation is that it implies only that there is an association; it does not mean that X causes Y. The only way to determine causation is with experimentation.

Formulas

For both continuous and discrete RVs:

$$
\operatorname{Corr}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{(S D X)(S D Y)}
$$

The sample correlation is usually referred to as r

Discrete Example: Covariance

$\operatorname{Cov}(X, Y)=1875, S D X=75, S D Y=82.9156$

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{(S D X)(S D Y)}=\frac{1875}{(75)(82.9156)}=0.301511
$$

$\rho_{X Y}=0.3015$, which is close to 0 and positive, indicating that there is a weak, positive linear relationship between X (auto insurance) and Y (home insurance). Generally, more people that have auto insurance will also have home insurance through the same company (or at least in this company).

