The Use of One and Two Stage Cluster Sampling with Probabilities Proportional to Size to Estimate the Total Number and Proportion of Single Family Units in a Neighborhood

A Case Study of the South Tabor Neighborhood in Portland, Oregon
Marie L. Tree
STAT422

Introduction

- What is the research question? The question of this project is "what is an effective sample survey method to obtain an estimation of the total number and proportion of single housing units in a neighborhood?"
- What is the population to be sampled?: A case study of the surveyor's neighborhood---the South Tabor neighborhood of Portland, Oregon--- will be conducted.
- What will be measured?: Areas designated as plots by the City of Portland will be measured with $1 / 0$ responses depending on whether or not a single family unit is on the plot.
- Why is the sample being taken?: The surveyor is passionate about Portland, Oregon and her neighborhood, and has a personal interest in learning more about where she lives.

Sampling Design

- What are the elements?: The elements are plots of land with distinct boundaries as marked by the City of Portland.
- What is the population?: The population is the collection of plots that make up the South Tabor neighborhood. The area that constitutes the population is bordered by SE Division Street to the north, SE $82^{\text {nd }}$ Street to the east, SE Powell Boulevard to the south, and SE $52^{\text {nd }}$ Street to the west.
- What are the sampling units?: The sampling units are blocks. The blocks may be a regularly or irregularly shaped area with an identifiable geographical boundary. The blocks were numbered by the surveyor in the frame.
- What is the frame?: The frame was obtained from the website portlandmaps.com.

The Frame of the South Tabor Neighborhood in Portland, Oregon

Census Data and One Stage Cluster Sample Size

 Determination for Probabilities Proportional to Size

Total Plots	Total Single Family Units	Proportion of Single Units	δ used in sample size determinatio n
2209	1919	.8687	2.23

$\mathrm{n}=\left(\mathrm{N} \delta^{2}\right) /\left((\mathrm{ND})+\delta^{2}\right)$
Let $B=100$
$\mathrm{D}=\mathrm{B}^{2} / 4 \mathrm{~N}^{2}=100^{2} /\left(4\left(136^{2}\right)\right)=.135$
$\mathrm{n}=\left(136^{*} 2.23^{2}\right) /\left(\left(136^{*} .135\right)+2.23^{2}\right)=28.985 \uparrow 30$

- The macro pps was used with the seed $=40567$ to generate a random sample of blocks from the census data

Single Stage Cluster Sampling Using Probabilities Proportional to Size Results

	block	plots	single fam	yibar	(yibar-uhatpps)*2
1	5	16	15	0.9375	0.00375769
2	6	29	22	0.7586206897	0.0138248942
3	7	12	12	1	0.01532644
4	20	10	8	0.8	0.00580644
5	43	10	10	1	0.01532644
6	47	25	17	0.68	0.03849444
7	47	25	17	0.68	0.03849444
8	49	21	20	0.9523809524	0.0058035375
9	51	28	21	0.75	0.01592644
10	54	33	31	0.9393939394	0.003993474
11	54	33	31	0.9393939394	0.003993474
12	57	18	17	0.944444444	0.0046573042
13	59	22	22	1	0.01532644
14	68	14	14		0.01532644
15	83	28	22	0.7857142857	0.0081876645
16	83	28	22	0.7857142857	0.0081876645
17	83	28	22	0.7857142857	0.0081876645
18	83	28	22	0.7857142857	0.0081876645
19	84	11	9	0.8181818182	0.0033661094
20	90	41	39	0.9512195122	0.0056279272
21	90	41	39	0.9512195122	0.0056279272
22	93	18	18	1	0.01532644
23	93	18	18	1	0.01532644
24	95	15	13	0.866666667	0.0000908844
25	98	34	34	1	0.01532644
26	100	17	13	0.7647058824	0.0124309383
27	114	23	16	0.6956521739	0.0325975175
28	116	16	16	1	0.01532644
29	118	17	17	1	0.01532644
	135	14		0.7142857143	026216

- $\mu_{\text {(hat)pps }}=(1 / n) \sum \bar{y}_{i}$
$=(1 / 30)[0.9375+0.7586+\ldots 0.71429]=0.8762$
- $\mathrm{V}_{\text {(hat) }}\left(\mathrm{u}_{\text {(hat)pps }}\right)=(1 /(\mathrm{n}(\mathrm{n}-1))) \sum\left(\overline{\mathrm{y}}_{\mathrm{i}}-\mu_{\text {(hat)pps }}\right)^{2}$
$=(1 /(30(29)))[0.00375+0.01382+\ldots+0.02622]--->B=0.042$
- $\tilde{\tau}_{\text {(hat)pps }}=(M / n) \sum \bar{y}_{i}$
$=(2209 / 30)[0.9375+0.7586+\ldots 0.71429]=1935.564$
- $\mathrm{V}_{\text {(hat) }}\left(\tilde{\mathrm{I}}_{\text {(hat) }) \text { pps }}\right)=\left(\mathrm{M}^{2} /(\mathrm{n}(\mathrm{n}-1)) \sum\left(\overline{\mathrm{V}}_{\mathrm{i}}-\mu_{\text {(hat)pps }}\right)^{2}\right.$
$=\left(2209^{2} /\left(30^{*} 29\right)\right)[0.00375+0.01382+\ldots+0.02622]--->B=93.707$
- See appendix for SAS code and results

Two Stage Cluster Sample Size Determination for Probabilities Proportional to Size

- Pilot Study Simple Kandom Sample Output Data Set $=$ project_srs

$$
\begin{array}{|r|r|r|r|}
\hline \text { Obs } & \text { blek } & \text { plt } & \text { st } \\
\hline \mathbf{1} & 0 & 23 & 23 \\
\hline 2 & 14 & 24 & 23 \\
\hline 3 & 28 & 12 & 12 \\
\hline 4 & 35 & 14 & 13 \\
\hline 5 & 43 & 10 & 10 \\
\hline 6 & 57 & 18 & 17 \\
\hline 7 & 00 & 15 & 8 \\
\hline 8 & 82 & 12 & 11 \\
\hline 9 & 00 & 17 & 14 \\
\hline 10 & 111 & 10 & 10 \\
\hline
\end{array}
$$

SAS Results for
$\delta_{\mathrm{w}}{ }^{2}$ and $\delta_{\mathrm{h}}{ }^{2}$

Covariance Parameter Estimates	
Cov Parm	Estimate
blck	543.41
Residual	23.8534

- $\mathrm{m}=\sqrt{ }\left(\delta_{\mathrm{w}}{ }^{2} / \delta_{\mathrm{b}}{ }^{2}\right)=\sqrt{ }(23.8534 / 543.41)=.2095 \uparrow 21 \%$

Therefore, 21% within clusters will be sampled

- The desire is to use the same random sample of blocks that was used in One Stage Clustering
- $\mathrm{n}=30$, or 22% of the total clusters

$$
\begin{aligned}
& \left.\left(V_{(\text {hat) }}\left(\mu_{\text {(hatat }}\right)\right)\right)=(1 / \mathrm{n})\left(\delta_{\mathrm{b}}^{2}+\left(\delta_{\mathrm{w}}^{2} / \mathrm{m}\right)\right) \\
& =(1 / .22)(543.41+(23.8534 / .21))=2986.35 \\
& --->\mathrm{B}=110
\end{aligned}
$$

Two stage Cluster Sampling Using Probabilities Proportional to Size Results

	block	plots	single fam	samplesize	sample size Rounded	Plots Sampled
- 1	5	16	15	3.36		$4[2,5,8,14]$.
2	6	29	22	6.09		7 [11, 4, 5, 14, 17, 26, 29]
3	7	12	12	2.52		$3[2,3,8]$
4	20	10	8	2.1		$3[1,6,8]$
5	43	10	10	2.1		$3[1,9,10]$
6	47	25	17	5.25		$6[1,5,11,15,21,22]$
7	47	25	17	5.25		$6[5,8,10,15,21,25]$
8	49	21	20	4.41		$5[4,8,12,15,19]$
9	51	28	21	5.88		$6[1,6,8,17,21,22]$
10	54	33	31	6.93		$7[1,3,11,19,22,26,27]$
11	54	33	31	6.93		$7[4,6,10,19,21,26,32]$
12	57	18	17	3.78		$4[9,13,15,16]$
13	59	22	22	4.62		$5[4,5,6,9,912]$
14	68	14	14	2.94		$3[1,2,8]$
15	83	28	22	5.88		$6[2,6,7,15,17,23]$
16	83	28	22	5.88		$6[5,8,9,17,21,26]$
17	83	28	22	5.88		$6[2,6,8,11,12,26]$
18	83	28	22	5.88		6 [1, 13, 17, 18, 20, 21]
19	84	11	9	2.31		$3[2,8,9]$
20	90	41	39	8.61		$9[2,13,16,24,28,31,34,37,40]$
21	90	41	39	8.61		$9[2,7,10,12,15,17,31,34,40]$
22	93	18	18	3.78		$4[2,8,11,18]$
23	93	18	18	3.78		$4[1,6,10,17]$
24	95	15	13	3.15		$4[5,7,9,13]$
25	98	34	34	7.14		$8[5,6,7,9,16,22,25,30]$
26	100	17	13	3.57		$4[6,7,13,15]$
27	114	${ }^{23}$	16	4.83		$5[5,8,15,17,23]$
28	116	16	16	3.36		$4[7,11,12,13]$
29	118	17	17	3.57		$4[4,5,15,16]$
30	135	14	10	2.94		$3[3,4,11]$


```
\mu
=(1/30)[4/4+4/7+...+3/3]=.8685
- }\mp@subsup{\boldsymbol{V}}{\mathrm{ (hat)}}{}(\mp@subsup{\mu}{(\mathrm{ (hat)pps)}}{}=(1/[(n(n-1)])\sum(\mp@subsup{\overline{y}}{i}{}-\mp@subsup{\mu}{(\mathrm{ (hat)pps)}}{}\mp@subsup{)}{}{2
=(1/[30(29)])[(1-.8685)}\mp@subsup{)}{}{2}+(.5714-.8685\mp@subsup{)}{}{2}+\ldots(1-.8685\mp@subsup{)}{}{2}
=(1/30)(.19222')0.00123--->B=0.070
- }\mp@subsup{\tilde{\textrm{L}}}{\mathrm{ (hat)pps }}{=(M/n) \sum\mp@subsup{\overline{y}}{i}{}
=(2209)(.8685)=1918.62
- }\mp@subsup{V}{(\mathrm{ (hat) }}{}\mp@subsup{\tilde{u}}{(\mathrm{ (hat)pps)}}{})=(\mp@subsup{M}{}{2}/[(n(n-1)])\sum(\mp@subsup{\overline{y}}{i}{}-\mp@subsup{\mu}{(\mathrm{ hat) pps }}{}\mp@subsup{)}{}{2
=(22092/[[30(29)])[(1-.8685)2+(.5714-.8685)}\mp@subsup{)}{}{2}+\ldots..(1
.8685)}\mp@subsup{)}{}{2}=(22092/30)(.1922\mp@subsup{)}{}{2=6008.65--->B=155.03
- See appendix for SAS code and results
```


What if a SRS of blocks was used instead of Probabilities Proportional to Size?

	block	plots	single fam
1	11	12	12
2	22	9	
3	23	10	10
4	31	9	8
5	36	9	8
6	38	18	15
7	43	10	10
8	44	12	11
9	60	15	
10	62	8	
11	70	18	6
12	74	17	17
13	79	18	14
14	82	12	11
15	86	16	16
16	88	15	10
17	91	17	17
18	92	18	18
19	95	15	13
20	99	17	14
21	100	17	13
22	106	16	13
23	108	6	4
24	111	10	10
25	113	20	17
26	121	14	14
27	128	14	14
28	129	11	11
29	130	10	10
30	131	7	

- The macro srs was used to generate a SRS of 30 blocks from the census data. A seed=9101112 was used.
- The macro ratio was used to generate the estimate of the total and proportion of single housing units
- The results were $\tilde{u}_{\text {(hat) }}=1582.13$ with $B=85.0135$ and $\mu_{\text {(hat) }}=.8725$ with $B=.0469$

Summary of Findings of Total and Proportion of Single

 Family Units in the South Tabor Neighborhood| | | ก | | μ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1919 | | . 8687 | |
| | ¢ (Hat) | B (l Hat) | μ (hat) | B (μ hat) | Technical
 Evaluation |
| 1 Stage PPS | 1935.564 | 93.707 | . 8762 | . 042 | - |
| 2 Stage PPS | 1918.62 | 155.03 | . 8685 | . 070 | () |
| 1 Stage SRS | 1582.13 | 85.0135 | . 8725 | . 0469 | © |

Conclusions

The pps method is the favored approach for this dataset. This project strongly supports the statement found in STAT422's text on page 291:
"We now have three estimators of the population total in cluster sampling: the ratio estimator, the unbiased estimator, and the pps estimator. How do we know which is best? Here are some guidelines for answering this question.
If y_{i} is uncorrelated with m_{i}, then the unbiased estimator is better than either of the other two.
If y_{i} is positively correlated with m_{i}, then the ratio and pps estimators are more precise than the unbiased estimator. The pps estimator is better than the ratio estimator if the within-cluster variation does not change with changing m_{i} -
The ratio estimator is better than the pps estimator if the within-cluster variation increases with increasing m_{i}."
Reference: Elementary Survey Sampling, Scheaffer, Mendenhall III, Ott, $6^{\text {th }}$ Edition, 2006.

Conclusions

- For future studies in obtaining estimates of plot types in neighborhoods where the within cluster variation does not change as the number of plots increases in the blocks, one and two stage clustering with probability proportional to size sampling is recommended
- Two stage clustering would require less measurements as compared with one stage clustering
- When an acceptable method is chosen, the surveyor learned to trust the methods learned in STAT422 within the confidence interval assigned by doing this project

