Regression Checklist

For Simple Linear Regression

$Checklist^1$

- (1) Look at raw data scatterplot (is it linear?)
- (2) State the population model and identify its components
 - $y = \beta_0 + \beta_1 x + \epsilon_i$
 - -y: response
 - β_0 : y-intercept (value of y when x = 0)
 - $-\beta_1$: slope
 - $-\epsilon_i$: residual (error) term
- (3) Use regression analysis output (provided) to obtain the sample regression equation
 - Use equation for estimations
 - $-\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ with $\hat{\beta}_0$ and $\hat{\beta}_1$ as numerical values found on the provided regression output • Calculate residuals
 - $-e = y \hat{y_i} = observed estimated$
- (4) Interpret slope and intercept **in context**. If one does not make logical sense, state the reason(s)
 - Slope: the change in y (either increase or decrease based on the value of the slope) due to a one-unit increase in x
 - Intercept: the value of y when x = 0. May not make logical sense in context, especially when x = 0 is not a value in the observed dataset
- (5) Hypothesis tests for slope (and intercept if appropriate)
 - Results for hypothesis tests on provided regression analysis output
 - State hypotheses, test statistic, *pvalue*, results, and conclusion (same basic steps as learned starting in Module 8)
 - Slope: $H_0: \beta_1 = 0$ vs. $H_a: \beta_1 \neq 0$
 - Intercept (only if appropriate see step 4): $H_0: \beta_0 = 0$ vs. $H_a: \beta_0 \neq 0$
- (6) Correlation (r) and the Coefficient of Determination (R^2)
 - R^2 is listed as Multiple R-square on the output; R^2 (convert to a percent) is the percent of the variation in the estimated response that can be explained by the model
 - Want $R^2 \ge 60\%$
 - r is not on the output but if $R^2 = (r)^2$, then $r = \pm \sqrt{R^2}$ and the sign is the same as the slope (if the slope is negative, r is negative; if the slope is positive, r is positive)
 - $-|r| \ge 0.8$: strong
 - $-0.6 \le |r| < 0.8$: moderate
 - $-0.4 \le |r| < 0.6$: fair
 - -|r| < 0.4: weak

¹Disclaimer: Some results may vary. In other words, no two of my checklists to date have been identical but all contain the same basic procedures :-)

- (7) List assumptions and check them (make brief but specific mentions of how they are/are not met)
 - (1) $E(\epsilon_i) = 0$ (mean of residuals ≈ 0); histogram of residuals should be centered at 0 (largest bar right at around 0 on the x-axis)
 - (2) $V(\epsilon_i) = \sigma_{\epsilon}^2$ (variance of residuals is constant); plot of Residuals vs. Predicted shows no pattern in the plot
 - (3) $Cov(\epsilon_i, \epsilon_j) = 0$ (independence of residuals); no check for this, assume it is met
 - (4) $\epsilon_i \sim N(0, \sigma_{\epsilon}^2)$ (normality of residuals); histogram of residuals should be approximately normal/symmetric **OR** most points on the QQplot are along the y = x line
- (8) Overall assessment of the model using specific references to numbers 5, 6, and 7 from this checklist. If all are "good", then you have a good (decent) model.²

 $^{^{2}}$ For a detailed example that follows the basics of this checklist, see Final Exam Review on the class website.