Stat 301 A3

Summer 2019

(1) Given the following pdf, calculate the following:

$$
f(x)=\left\{\begin{array}{rc}
c y^{2} & 0 \leq y \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) What value of c makes this a valid pdf?
(b) Find $F_{Y}(y)$
(c) Find $P(1 \leq Y \leq 2)$
(d) Calculate $E Y, V Y, S D Y$
(2) Given the following pdf, calculate the following:

$$
f(x)= \begin{cases}\frac{1}{200} e^{(-x / 200)} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is this distribution and what are its parameter(s)?
(b) Find $P(X>100)$
(c) $P(100<X<200)$
(d) $F_{X}(x)$
(e) $E X, V X, S D X$
(3) Given the following pdf, calculate the following:

$$
f(x)= \begin{cases}\frac{1}{\Theta_{2}-\Theta_{1}} & \Theta_{1}<x<\Theta_{2} \\ 0 & \text { otherwise }\end{cases}
$$

(a) What is this distribution and what are its parameter(s)?
(b) Find $F_{X}(x)$
(c) Over the interval $[0,30]$, find $P(25 \leq X \leq 30)$
(d) $E X, V X, S D X$
(4) Given $Z \sim N(0,1)$ find the following:
(a) $P(Z \geq 1.4)$
(b) $P(Z>0.75)$
(c) $P(|Z| \leq 2)$
(d) $P(|Z| \geq 2)$
(e) Find z such that $P(Z<z)=0.11$
(f) Find z such that $P(Z>z)=0.02$
(5) Heights of 10 year olds, regardless of gender, closely follow a normal distribution with mean 55 inches and standard deviation 6 inches. Find the following probabilities:
(a) A randomly chosen 10 year old is shorter than 48 inches
(b) A randomly chosen 10 year old is between 60 and 65 inches
(c) If the tallest 10% of the class is considered to be "very tall", what is the height cutoff for "very tall"?
(d) The height requirement for Batman the Ride at Six Flags Magic Mountain is 54 inches. What percent of 10 year olds cannot go on this ride?

