
Statistics 301: Probability and Statistics
Simple Linear Regression (SLR)

Module 12
2018

Simple Linear Regression (slr)

• SLR analysis explores the linear association between an explanatory (independent) variable, usually
denoted as x, and a response (dependent) variable, usually denoted as y

• This type of data is called bivariate data (data with two (bi) variables)
• The point is to see if we can use a mathematical linear model to describe the association (relationship)

between the two variables
• Using one known value to estimate the other value, in addition to seeing how strong the relationship is
• You are familiar with y = mx+ b from algebra, where m is the slope and b is the y-intercept (value of
y when x = 0), which is a mathematical linear equation, a deterministic equation.

The population regression model

Notice that it is basically the same as you have seen and used before (y = mx+ b):

yi = β0 + β1xi + εi

Where:

• yi: value of the response (dependent) variable
• β0: the value of the y-intercept (when x = 0)
• β1: the value of the slope (the change in y due to a one unit increase in x, not rise

run )
• εi: the residual (error) term

The sample regression model

Is used once there are estimated values from the data:

ŷi = β̂0 + β̂1xi or ŷ = a+ bx

Where:

• ŷi: estimate of the value of the ith response (dependent) variable

• β̂0 (a): the estimate of the value of the y-intercept (ŷ when x = 0)

• β̂1 (b): the estimate of the value of the slope (the change in y due to a one unit increase in x. Not rise
run )

• Note that εi dropped off from the other model. This is because of the first assumption of regression,
E(εi) = 0: the mean of the residuals = 0.
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Assumptions of SLR

(1) E(εi) = 0: the mean of the residuals is 0
(2) V (εi) = σ2

ε : the variance of the residuals is constant (the same) for all values of ŷ. Also called constant
variance, homogeneity of variance (means same variance)

(3) Cov(εi, εj) = 0: independence of residuals
(4) εi ∼ N(0, σ2

ε ): Residuals have an approximate normal distribution with mean 0 and homogeneous
variance

Residuals

The vertical distances of each point (Xi, Yi) from the line, are called residuals (also referred to as errors).

Residuals: εi are the population residuals and ε̂i = ei are the sample residuals

ei = yi − ŷ. If ei > 0, the model understimated the response and if ei < 0, the model overstimated the
response.

Residual variation

s2
ε =

∑
(yi−ŷi)2

n−2 the average squared distance between each estimated y and the observed value of y, called
MSE, mean squared error, or residual variance (the variance of the residuals).

sε =
√∑

(yi−ŷi)2

n−2 the average distance between each estimated y and the observed value of y, called RMSE,
root mean squared error, or residual standard error (the standard error of the residuals).

Analysis tools: scatterplot graph

• First thing that is necessary is to look at a scatterplot of the two variables; the scatterplot will
show if there is a linear association between the explanatory (independent) variable and the response
(dependent) variable

• The point of visually checking the scatterplot before doing the regression analysis is decide if there is
at least a fair linear relationship between x and y

• If you do not have a linear relationship, then use of regression analysis is not recommended as the
results cannot be used with the given dataset

• The regression line is also called a trend line.

Module example data

With the example throughout this lecture will be Old Faithful; eruptions is the duration of the eruption of
Old Faithful and waiting is the interval between eruptions, both in minutes.

Eruptions will be the explanatory (independent) variable and waiting will be the response (dependent)
variable, modelling waiting time by eruption duration; in other words, we are using the eruption time to
estimate the time until the next eruption. Let x=eruptions and y=waiting.

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
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6 2.883 55

Analysis tools: scatterplot graph

This has positive slope (x increases and y increases)
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Analysis tools: scatterplot graph

This has negative slope (x increases and y decreases)
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Analysis tools: scatterplot graph

This has 0 slope (and a lot of random scatter)
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Analysis tools: scatterplot graph

This has 0 slope
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Analysis tools: scatterplot graph with regression line
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Slope and intercept formulas

Slope:

b =
∑

(xi − x)(yi − y)
s2
x(n− 1)

Intercept:

a = y − bx

Correlation

To determine the strength of the relationship between two quantitative variables, we use a measure called
correlation

Defn: Is a calculation that measures the strength and direction (positive or negative) of the linear relationship
between 2 quantitative variables, x and y

Correlation 6= causation

It is extremely important to note that just because two variables have a mathematical correlation IT DOES
NOT MEAN X CAUSES Y !!!. To establish actual causation, repeatable experimentation must be done.

Correlation logistics

• It is bounded between -1 and 1 (−1 ≤ r ≤ 1)
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– r = −1 and r = 1 are perfect linear relationships

– r = 0 implies both no linear relationship and x, y are independent

• r makes no distinction between x and y

• r has no units of measurement
• Correlation is denoted as r for sample correlation and ρ for the population correlation.

r = 1
n− 1

∑ (xi − x̄)(yi − ȳ)
sxsy

Coefficient of Determination, R2

R2 is called the coefficient of determination:

• It is the proportion (or ×100%) of observed variation that can be explained by the relationship between
x and y

• 0 ≤ R2 ≤ 1: It is bounded between 0 (0%) and 1 (100%)
– The closer to 1 (100%), the more variation we can explain and also the stronger the linear

relationship between x and y
∗ An acceptable baseline for R2 would be when R2 ≥ 60%

• R2 = (r)2 ∴ r = ±
√
R2

– if the slope is positive, then r is positive, if the slope is negative, then r is negative.

Analysis tools: scatterplot graph

Relatively strong, positive correlation
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Analysis tools: scatterplot graph

Moderately strong, negative correlation
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Analysis tools: scatterplot graph

No correlation
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Analysis tools: scatterplot graph

No correlation but there is a relationship, it is not a linear relationship
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Old Faithful summary statistics

x is eruptions, y is waiting

[,1]
sumxy 3787.985926
n 272.000000
xbar 3.487783
ybar 70.897059
s2x 1.302728
s2y 184.823312
sx 1.141371
sy 13.594974

Reading R output

The following picture is a printout of a regression summary table from fit=lm(y~x,data= ) and
summary(fit)
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Notes on R output

R does not directly display correlation r in the regression output but it does display the R2 value (called
Multiple R-squared)

Remember r = ±
√
R2, and use the sign of the slope to determine if r is positive or negative

It is a proportion in the output but can be converted to a percent (and usually is when discussing its results)
easily

Old Faithful Output

Call:
lm(formula = waiting ~ eruptions, data = faithful)

Residuals:
Min 1Q Median 3Q Max

-12.0796 -4.4831 0.2122 3.9246 15.9719

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 33.4744 1.1549 28.98 <2e-16 ***
eruptions 10.7296 0.3148 34.09 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.914 on 270 degrees of freedom
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Multiple R-squared: 0.8115, Adjusted R-squared: 0.8108
F-statistic: 1162 on 1 and 270 DF, p-value: < 2.2e-16

Using the regression equation

Use of the equation works just like you are used to; given a specified value of x, solve the equation for the
estimated y value called ŷ (y-hat)

ŷ = 33.47 + 10.73x

Find the values of ŷ and ei for each of the following values: (2.283, 62), (5.1, 96)

ŷ|x=2.283 = 33.474397 + 10.7296414 ∗ 2.283 = 57.9701683

ŷ|x=5.1 = 33.474397 + 10.7296414 ∗ 5.1 = 88.1955681

Calculating residuals, ei

e|x=2.283 = 62− 57.9701683 = 53.0213743

e|x=5.1 = 96− 88.1955681 = 87.0213743

Since both ei > 0, the model understimated the waiting times.

CIs for β0, β1

β̂j ± t?(seβ̂j
)

Where β̂j is either β̂0 (a) or β̂1 (b); same goes for the se, t? = tα/2,df and df = n− 2 for both cases.

seβ̂0
=

√
s2
ε

(
1
n

+ x2

s2
x(n− 1)

)
seβ̂1

=

√
s2
ε

s2
x(n− 1)

s2
ε =

∑
(yi − ŷi)2

n− 2 =
∑
e2
i

n− 2

All of these values are on the output, listed as Std.Error (for seβ̂0
and seβ̂1

) and Residual standard error
for sε
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Hypothesis tests for the estimated slope (β1) and intercept (β0)

• Most often the slope b is the only real test of interest

• Many times the value of x = 0 is not in the dataset (or the fact that mabye x = 0 is not possible in the
population the data was sampled from). Without x = 0 in the dataset (or even possible at all), the
intercept does not make sense in context

• Additionally, the slope is what is driving the relationship whereas the intercept just represents the
value where the regression line crosses through the y-axis

• There are some economic datasets and many others that utilize the intercept because it make sense
both mathematically and realistically.

Hypothesis tests for the estimated slope (β1 or b) and intercept (β0 or a)

• The null hypothesis for the slope is to test if the slope is equal to zero

• A slope of zero is a horizontal line, where any value of x has the same y value
• Most often of interest is whether or not it is significant, the alternative hypothesis is to see if the slope

is different from zero
• Realistically the hypothesized value could be something other than 0 if there is a need, like seeing if it

has increased or decreased since the previous sample was taken and analyzed

Test for β1, the slope

Hypotheses:
H0 : β1 = 0 vs. Ha : β1 6= 0

Test Statistic:

t = β̂1 − β1

seβ̂1

• The seβ̂1
and df = n− 2 are the same as for CIs

• Rejection criteria is the same as the t-tests learned in earlier modules (starting in module 9). Rejection
of the null means the slope is significant; there is a significant relationship between x and y. Not
rejecting the null means there is no significant relationship between x and y

Test for β0, the intercept

Hypotheses:
H0 : β0 = 0 vs. Ha : β0 6= 0

Test Statistic:

t = β̂0 − β0

seβ̂0

• The seβ̂0
and df = n− 2 are the same as for CIs
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• Rejection criteria is the same as the t-tests learned in earlier modules (starting in module 9). Rejection
of the null means the intercept is significant. Not rejecting the null just means the intercept is not
significant (but has no impact on the significance of the slope)

95% CI for β0

β̂0 ± t?(seβ̂0
)

df = n− 2 = 272− 2 = 270 and t? = tα/2,df = 1.969

β̂0 ± t?(seβ̂0
) = 33.474397± (1.969)(1.1548735) = 33.474397± 2.273946

= 31.2004511, 35.748343

With 95% confidence the true y-intercept is between = 31.2004511 and 35.748343 minutes.

95% CI for β1

β̂1 ± t?(seβ̂1
)

df = n− 2 = 272− 2 = 270 and t? = tα/2,df = 1.969

β̂1 ± t?(seβ̂1
) = 10.7296414± (1.969)(0.3147534) = 10.7296414± 0.6197495

= 10.1098919, 11.3493909

With 95% confidence the true slope is between 10.1098919 and 11.3493909 minutes.

Test for β1

Hypotheses:
H0 : β1 = 0 vs. Ha : β1 6= 0

Test Statistic:

t = β̂1 − β1

seβ̂1

= 10.7296414− 0
0.3147534 = 34.0890399

H0 can be rejected if |tcalc| ≥ tα/2,df where df = n− 2. df = 272− 2 = 270 and tα/2,df = 1.969
Since |34.0890399| ≥ 1.969, we reject H0. The slope is significant (also means the relationship is significant).
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r and R2

R2 (Multiple R-squared) is 0.8115 meaning that 81.15% of the variation in the estimated response is
explained by the linear relationship modeled with x and y

We can explain approximately 81.15% of the variation in the response (waiting times) due to the linear
relationship between x and y (which is good).

Since we are using output, r is calculated as r = +
√
R2 = +

√
0.8115 = 0.9. There is a strong, positive linear

relationship between eruptions and waiting of Old Faithful.

It is positive since the slope is positive (if r > 0 then β1 > 0, if r < 0 then β1 < 0, and vice versa)

Diagnostic plots used to check assumptions of slr

For checking assumptions, we need 3 graphs:
- Histogram of the residuals (#1,4)
- Scatterplot of residuals vs. predicted (#2)
- A normal probability plot, also called a QQ plot (#4)
- As for the 3rd assumption, there is often no need to check it except in specific circumstances, so just assume
it is met

Assumption 1: E(εi) = 0

Mean of the residuals is ≈ 0. For this, we look at a histogram of residuals to see if it is centered around zero
(see if the histogram has the highest bar at zero)

Histogram of residuals
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Assumption 2: V (εi) = σ2
ε

The variance of the residuals is constant (the same) for all values of ŷ. The plot of x=predicted and y=residuals
and it should have no discerable pattern (random scatter)
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Assumption 4: εi ∼ N(0, σ2
ε )

Normality of residuals means that the histogram of residuals should be approximately symmetric/bell-shaped
or that the QQplot (normal probability plot) shows that most points are along y=x line
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Notation

• β̂0: sample intercept
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• β̂1: sample slope
• ŷ: estimated value of y, called y-hat
• x: mean of x values
• y: mean of y values
• s2

x, s
2
y: standard deviation of x and y values, respectively

• ei: sample residual (estimate of εi), ei = yi − ŷi (observed y-estimated y)
• ŷ = a+ bx: regression equation
• s2

ε : residual variance, variance of residuals
• sε: residual standard error, standard error of residuals
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