Statistics 301: Probability and Statistics
 Continuous Distributions
 Module 5
 Updated 2019

Review of discrete random distributions

From Module 4, the distributions were discrete. A functions associated with a discrete random variable is usually called a probability mass function (pmf). The name pmf is suggested by a model used in physics for a system of "point masses". The pmf describes how the total probability mass of 1 is distributed at various points along the axis of possible values of the random variable.

Continuous distributions

Continuous Random Variable

- A random variable X is called continuous if it can take any value within a finite or infinite interval of the real number line $(-\infty, \infty)$
- Some examples would be measurements of length, strength, lifetime, pH , etc.

Density Function of a Continuous Random Variable

A continuous random variable X cannot have a PMF (probability mass function). The reason for this is that: $P(X=x)=0$
That is, there is no area under a curve at a single point

Probability Density Function (pdf)

Probability Density Function (pdf):
The probability density function (pdf) of a continuous random variable X is a nonnegative function f_{X} with the property that $P(a<X<b)$ equals the area under it and above the interval $[a, b]$. Thus,

$$
\begin{gathered}
P(a<X<b)=\text { area under } f_{X} \\
a \leq X \leq b
\end{gathered}
$$

Generic pdf

The area under a curve is found by integration, such as:

$$
P(a<X<b)=\int_{a}^{b} f(x) d x
$$

Keep in mind that the above is equal to the following as you cannot find probabilities of a single point:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Rules of Probibility

1. $0 \leq p(x) \leq 1$
2. $\int_{-\infty}^{\infty} f(x) d x=1$
3. Complement Rule
4. Addition Rule (for disjoint and non-disjoint events)
5. Multiplication Rule (for independent events)
6. Conditional Probability Rule

All the previously learned rules apply to continuous distributions.

Cumulative Distribution Function

The cumulative distribution function, or $\mathbf{C D F}$, of a random variable X gives the probability of events of the form [$X \leq x$], for all numbers x
Notation for the cumulative distribution function is:
CDF or $F_{X}(x)=P(X \leq x)$

$$
F_{X}(x)=\int_{-\infty}^{x} f(y) d y
$$

$E X, V X, S D X$ of Generic pdf

- Expected Value (mean), variance, and standard deviation

$$
\begin{gathered}
E X=\int_{-\infty}^{\infty} x f(x) d x \\
V X=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \\
=E\left(X^{2}\right)-(E X)^{2} \text { where } E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x \\
S D X=\sqrt{V X}
\end{gathered}
$$

Generic Example I

Let X denote the resistance of a randomly chosen resistor and suppose its pdf is given as:

$$
f(x)= \begin{cases}k x & 8 \leq x \leq 10 \\ 0 & \text { otherwise }\end{cases}
$$

(1) Calculate k
(2) CDF of X
(3) Calculate $P(X<9)$
(4) Use CDF to calculate $P(8.6 \leq X \leq 9.8)$ and $P(X \leq 9.8 \mid X \geq 8.6)$
(5) Calculate $E X, V X, S D X$

Generic Example II

$$
\begin{gathered}
\int_{8}^{10} k x d x \\
=\frac{1}{\frac{1}{2}\left(10^{2}-8^{2}\right)} \Rightarrow k=\frac{1}{18}
\end{gathered}
$$

$$
f(x)= \begin{cases}\frac{1}{8} x & 8 \leq x \leq 10 \\ 0 & \text { otherwise }\end{cases}
$$

The CDF:
$F_{X}(x)=\left.\int_{8}^{x} \frac{1}{18} y d y \Rightarrow \frac{1}{18}\left(\frac{y^{2}}{2}\right)\right|_{8} ^{x}$
$\Rightarrow \frac{1}{36}\left(x^{2}-64\right)=\frac{x^{2}-64}{36}$

Generic Example III

- $P(X<9)$
$=\int_{8}^{9} f(x) d x=\int_{8}^{9} \frac{x}{8} d x=F(9)=\frac{9^{2}-64}{36}=0.472222$

Generic Example IV

- $P(8.6 \leq X \leq 9.8)$
$=\int_{8.6}^{9.8} f(x) d x=F(9.8)-F(8.6)=\frac{9.8^{2}-64}{36}-\frac{8.6^{2}-64}{36}=$ $=0.613333$
- For $P(X \leq 9.8 \mid X \geq 8.6)$, formula for conditional probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ so
$P(X \leq 9.8 \mid X \geq 8.6)=\frac{P(X \leq 9.8 \cap X \geq 8.6)}{P(X \geq 8.6)}$
$=\frac{P(8.6 \leq X \leq 9.8)}{P(X \geq 8.6)}$
$=\frac{F(9.8)-F(8.6)}{F(10)-F(8.6)}=0.8479$

Generic Example V

- Find $E X, V X, S D X$

$$
E X=\int_{8}^{10} x\left(\frac{1}{18} x\right) d x=\frac{1}{18} \int_{8}^{10} x^{2} d x
$$

$=\frac{1}{18}\left(\frac{x^{3}}{3}\right)_{8}^{10}=\frac{10^{3}-8^{3}}{54}=9.037037$

$$
E\left(X^{2}\right)=\int_{8}^{10} x^{2}\left(\frac{1}{18} x\right) d x=82
$$

$V X=E\left(X^{2}\right)-(E X)^{2}=0.331962$
$S D X=\sqrt{V X}=0.576161$

Graph of Generic Example pdf

Since there are an infinite number of values within the interval from 8 to 10 , I just chose 1000 values (it could have been smaller but I just chose 1000)

Histogram of $\mathbf{f x}$

Graph of Generic Example CDF

Plot of CDF

x1

Uniform Distribution

In the context of probability distributions, a uniform distribution refers to a probability distribution for which all of the values that a random variable can take on occur with equal probability. This probability distribution is defined as follows.

A random variable X is said to be uniform if all values of X are equally likely

$$
\begin{gathered}
X \sim U(A, B) \\
P(a<X<b)=\int_{a}^{b} \frac{1}{B-A} d x \text { for } A<X<B
\end{gathered}
$$

Uniform $E X, V X, S D X$

$$
\begin{gathered}
E X=\frac{B+A}{2} \\
V X=\frac{(B-A)^{2}}{12} \\
S D X=\sqrt{V X}
\end{gathered}
$$

Uniform Example I

Say that Y has a uniform distribution on the interval $[2,5]$. Find the following:

- $f(y)$
- $F_{Y}(y)$
- $P(2<Y<3)$
- $E X, V X, S D X$

Uniform Example II

$$
\begin{gathered}
f(y)=\left\{\begin{array}{rc}
\frac{1}{5-2} & 2 \leq y \leq 5 \\
0 & \text { otherwise }
\end{array}\right. \\
F_{Y}(y)=\int_{2}^{y} \frac{1}{3} d x=\frac{1}{3}(x)_{2}^{y}=
\end{gathered}
$$

$\frac{y-2}{3}$

$$
P(2<Y<3)
$$

$=F(3)-F(2)=0.333333$

Uniform Example III

$$
\begin{gathered}
E X=\frac{B+A}{2}=\frac{5+2}{2}=3.5 \\
V X=\frac{(B-A)^{2}}{12}=\frac{(5-2)^{2}}{12}=0.75 \\
S D X=\sqrt{V X}=\sqrt{0.75}=0.866025
\end{gathered}
$$

Graph of Uniform pdf

```
y1=seq(from=2,to=5,length.out=1000); fy=runif(length(y1),min=2,max=5)
hist(fy,prob=T); curve(dunif(x,min=2,max=5),col='blue',add=T)
```


Histogram of fy

Graph of Uniform CDF

```
y1=seq(from=2,to=5,length.out=1000); F=antiD((1/3) ~y); Fy=F(y1)-F(2)
plot(y1,Fy,type='l',main="Uniform CDF")
polygon(c(y1,y1[length(y1)]), c(Fy,Fy[1]),col='blue')
```


Uniform CDF

The Exponential Distribution

X is said to have an exponential distribution with parameter λ and pdf:

$$
f(x ; \lambda)=\left\{\begin{array}{rr}
\lambda e^{-\lambda x} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and will always have the CDF (through integration by parts):

$$
\begin{gathered}
F_{X}(x)=1-e^{-\lambda x} \\
E X=\frac{1}{\lambda} \\
V X=\frac{1}{\lambda^{2}} \\
S D X=\sqrt{V X}
\end{gathered}
$$

Exponential Example I

Suppose that the useful time (in years) of a PC is exponentially distributed with parameter $\lambda=0.25$. A student entering a four-year undergraduate program inherits a two-year old PC from his sister who just graduated. Find the probability that the useful lifetime of the PC will last at least until he graduates (assume within 4 years). Let X denote the useful lifetime of the PC.
$f(x ; \lambda)=f(x ; 0.25)=\frac{1}{4} e^{-\frac{1}{4} x}$
$P(X>4+2 \mid X>2)=\frac{P(X>4+2 \cap X>2)}{P(X>2)}$
$=\frac{P(X>6)}{P(X>2)}=\frac{e^{-.25 * 6}}{e^{-.25 * 2}}=0.367879$

Exponential Example II

About how long would you expect the PC to last, on average? (this is the question to find the mean). Find $E X, V X, S D X$
$E X=\frac{1}{\lambda}=\frac{1}{0.25}=4$
$V X=\frac{1}{\lambda^{2}}=\frac{1}{(0.25)^{2}}=16$
$S D X=\sqrt{V X}=4$
Graph of Exponential pdf

```
fx=rexp(1000,rate=.25)
hist(fx,prob=T,main="Exponential pdf")
curve(dexp(x,rate=.25), col='blue',add=T)
```

Exponential pdf

Graph of Exponential CDF

```
x1=seq(0:1000); F=antiD((1/4)*exp(-.25*x) ~x); Fx1=F(x1)-F(0)
plot(x1,Fx1,type='l',main="Exponential CDF",ylim=c(0.2,1.1))
polygon(c(x1,x1[length(x1)]),c(Fx1, Fx1[1]),col='blue')
```

Exponential CDF

x1

The Normal Distribution

The normal distribution is one of the most important and widely used. Many populations have distributions that can be fit very closely by an appropriate normal curve.
A continuous rv X is said to have a normal distribution with parameters μ and σ^{2} where $-\infty<\mu<\infty$ and $\sigma^{2}>0$, if the pdf of X is:

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(X-\mu)^{2} / 2 \sigma^{2}}
$$

With $E X=\mu, V X=\sigma^{2}$ and $S D X=\sigma$

The Normal Density Curve

The following graphs will illustrate differences in the exact shape of the normal distribution, depending on the standard deviation (or variance). μ will be located in the center of the distribution (because of its symmetry) and σ will horizontally extend from μ to the first inflection point on the curve. Large values of σ yield graphs that are quite spread out about μ (and a value of X far from μ may be well observed), whereas small values of σ yield graphs with a high peak above μ and most of the area under the graph quite close to μ (implying that a value of X far from μ is quite unlikely).

Normal Distribution mean $=100$, $\mathrm{sd}=2.5$

```
d1=density(rnorm(1000,100,2.5))
plot(d1,xlim=c(0,200))
polygon(d1, col="blue",border="grey")
```

?nsity.default(x = rnorm(1000, 101

$$
\mathrm{N}=1000 \text { Bandwidth }=0.5668
$$

Normal Distribution mean $=100$, $\mathrm{sd}=12$

```
d2=density(rnorm(1000,100,12))
plot(d2,xlim=c(0,200))
polygon(d2, col="blue",border="grey")
```


ensity.default(x = rnorm(1000, 10

$$
\mathrm{N}=1000 \text { Bandwidth }=2.705
$$

Normal Distribution mean $=100$, $s d=29$

```
d3=density(rnorm(1000,100,29))
plot(d3,xlim=c(0,200))
polygon(d3, col="blue",border="grey")
```

ənsity.default($\mathrm{x}=\operatorname{rnorm}(1000,10$

$$
N=1000 \quad \text { Bandwidth }=6.691
$$

Normal pdf

When X is a normal rv with mean μ and variance σ^{2},

$$
X \sim N(\mu, \sigma)
$$

To compute the probabilities, this requires techniques beyond the usual methods; for $\mu=0$ and $\sigma=1$, tables are used, tabulated for certain values of a and b. The table is also used for any values of μ and σ by standardizing the value and using the table (or software).

$$
z=\frac{X-\mu}{\sigma}
$$

Notation

When X is a normal rv with mean μ and variance σ^{2},

$$
\begin{gathered}
X \sim N(\mu, \sigma) \\
z=\frac{X-\mu}{\sigma} \\
P(Z<z)=\Phi(z)
\end{gathered}
$$

Standard Normal Example

With z-scores:
(1) $P(Z<1)$
(2) $P(Z>1)$
(3) $P(Z<-1)$
(4) $P(Z>-1)$
(5) $P(-1<Z<1)$
(6) z-score for top 1%
(7) z-score for $Q 1$
(8) z-score for $Q 3$

Normal Example I

Suppose that the diameter at breast height (in.) of trees of a certain type is normally distributed with mean 8.8 and standard deviation $2.8(\mu=8.8, \sigma=2.8)(X \sim N(8.8,2.8))$. Calculate the following:
(1) Probability the diameter of a randomly selected tree will be at least $10^{\prime \prime}$, exceed 10 "
(2) Probability the diameter of a randomly selected tree will exceed $20^{\prime \prime}$
(3) Probability the diameter of a randomly selected tree will be between $5^{\prime \prime}$ and 10 "
(4) Widest 8% are wider than what diameter
(5) If four trees are selected at random, what is the probability that at least one has a diameter exceeding $10 "$

Normal Example II (bahaha)

Spongeboob

Standard Normal Solutions I

With z-scores and StatDistributions.com:
(1) $P(Z<1)=\Phi(1)=0.841345$: input z-score, left tail
(2) $P(Z>1)=1-\Phi(1)=0.158655$: input z-score, right tail
(3) $P(Z<-1)=\Phi(-1)=0.158655$: input z-score, left tail
(4) $P(Z>-1)=1-\Phi(-1)=0.841345$: input z-score, right tail
(5) $P(-1<Z<1)=\Phi(1)-\Phi(-1)=0.682689$: input z-score, two tails

Standard Normal Solutions II

(6) z for top 1% is the same as the bottom 99% (or $99^{t h}$ percentile). $z_{0.99}=2.326348$: input 0.01 in the p-value, right tail OR 0.99 in p-value and left tail
(7) z for $Q 1$ is $z_{0.25}=-0.67449$: input 0.25 in the p-value, left tail
(8) z for $Q 3$ is $z_{0.75}=0.67449:$ input 0.75 in the p -value, left tail

Empirical Rule derivation:
(9) $P(-2<Z<2)=0.9545$: input z-score, two tail
(10) $P(-3<Z<3)=0.9973$: input z-score, two tails

Normal Solutions I part 1

(1) $P(X<10)=P\left(Z<\frac{10-8.8}{2.8}\right)=\phi(0.43)=0.665882, P(X>10)=P\left(Z>\frac{10-8.8}{2.8}\right)=1-\phi(0.43)=$ 0.334118
(2) $P(X>20)=P\left(Z>\frac{20-8.8}{2.8}\right)=1-\phi(4)=0.000032$
(3) $P(5<X<10)=P\left(\frac{10-8.8}{2.8}<Z<\frac{5-8.8}{2.8}\right)=\phi(0.43)-\phi(-1.36)=0.578515$

Normal Soultions I part 2

(4) Find z for top 8% (same as bottom 92%). $z_{0.92}=1.405072$. Use z-score equation and solve for x. $z=\frac{x-\mu}{\sigma} \Rightarrow x=z \sigma+\mu . x=(1.41)(2.8)+8.8=12.748$
(5) Find the probability for one item first: $P(X>10)=0.334118$. Now, since they are independent, if four trees are selected at random, what is the probability that at least one has a diameter exceeding 10 ". $P\left(X_{4}>1\right)=1-\left(X_{4}=0\right)=1-(0.334118)^{4}=0.987538$

Normal Solutions II

There is no solution for a normal Spongebob. . . he will be crazy forever. . . forever. . . forever...

