
Statistics 301: Probability and Statistics
Joint Distributions

Module 6
2018

Two Discrete Random Variables

The probability mass function (pmf) of a single discrete rv X specifies how much probability mass is placed
on each possible value of X. The joint pmf of two discrete RVs X and Y describes how much probability
mass is placed on each possible pair of values (x, y).

Definition

Let X and Y be two discrete RVs defined on the sample space S of an experiment. The joint probability
mass function p(x, y) is defined for each pair of numbers (x, y) by

p(x, y) = P (X = x and Y = y)

It must be the case that p(x, y) ≥ 0 and ΣxΣyp(x, y) = 1

Discrete Distribution Example

A large insurance agency services a large number of customers who have purchased both a homeowner’s
policy and an automobile policy from the agency. For each type of policy, a deductible is specified; the auto
poilcy has deductibles of $100 or $250, whereas a homeowner’s policy has deductibles of $0, $100 or $200.
Let X = the deductible amount on the auto policy and Let Y = the deductible amount on the homeowner’s
policy. The next slide contains the table distribution.

Find: P (X = 100 and Y = 100) = p(100, 100)
P (Y ≥ 100)

Discrete Distribution Example Data

y

p(x, y) 0 100 200
x 100 0.20 0.10 0.20

250 0.05 0.15 0.30

Discrete Example: Probabilities

P (X = 100 and Y = 100) = p(100, 100) = 0.10

P (Y ≥ 100) = p(100, 100) + p(100, 200) + p(250, 100) + p(250, 200) = 0.1 + 0.2 + 0.15 + 0.3 = 0.75
OR (complement rule)
1− P (Y < 100) = 1− P (Y = 0) = 1− [p(100, 0) + p(250, 0)] = 1− (0.2 + 0.05) = 1− 0.25 = 0.75
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Discrete Marginal Distributions (marginal pmfs)

The marginal probability mass function of X, denoted by pX(x), is given by

pX(x) =
∑

y

p(x, y) ∀ x

Similarly, the marginal probability mass function of Y , denoted by pY (y), is given by

pY (y) =
∑

x

p(x, y) ∀ y

Discrete Example: Marginal Distributions of X and Y

pX(100) =
∑

y p(x, y) = p(100, 0) + p(100, 100) + p(100, 200) = 0.5

pX(250) =
∑

y p(x, y) = p(250, 0) + p(250, 100) + p(250, 200) = 0.5

pY (0) =
∑

x p(x, y) = p(100, 0) + p(250, 0) = 0.25

pY (100) =
∑

x p(x, y) = p(100, 100) + p(250, 100) = 0.25

pY (200) =
∑

x p(x, y) = p(100, 200) + p(250, 200) = 0.5

Discrete Marginal Distributions

pX(x) =

 0.5 x = 100
0.5 x = 250
0 otherwise

pY (y) =


0.25 y = 0
0.25 y = 100
0.5 y = 200
0 otherwise

Independence of X and Y

Two random variables X and Y are independent if for every pair of x and y values,

p(x, y) = pX(x) · pY (y) when X and Y are discrete

Or

f(x, y) = fX(x) · fY (y) when X and Y are continuous

If the above are not satisfied for all (x, y), then all X and Y are said to be dependent
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Discrete Example: Independence

Are X and Y independent?

? p(100, 100) = pX(100) · pY (100) ?

⇒ 0.1 6= (0.5)(0.25)

No, they are not independent

Continuous Distribution Example: Independence

Are X and Y independent?

? f(x, y) = fX(x) · fY (y) ?

Try f(1, 1)

? f(1, 1) = fX(1) · fY (1) ?

f(1, 1) = 0.35; fX(1) = 0.35; fY (1) = 1.00

⇒ 0.35 = (0.35)(1)

So, X and Y are independent

Joint Conditional Probabilities

Recall the formula for conditional probability:

P (A|B) = P (A ∩B)
P (B)

The same follows for discrete and continuous distributions:

pY |X(y|x) = p(x, y)
pX(x)

fY |X(y|x) = f(x, y)
fX(x)

Discrete Example: Conditional Probabilities

pY |X(Y = 200|X = 100) = p(100, 200)
pX(100)

= 0.2
0.5 = 2

5
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Continuous Example: Conditional Probabilities

fY |X(Y > 0.5|X < 1) = f(X < 1, Y > 0.5)
fX(X < 1)

f(X < 1, Y > 0.5) =
∫ 1

0

∫ 1

0.5
f(x, y) dydx

=
∫ 1

0
∫ 1

0.5

(
9xy2

10 + 1
5

)
dydx = · · · = 0.23125

fX(x < 1) =
∫ 1

0
fX(x) dx

=
∫ 1

0
( 3x

10 + 1
5
)
dx = · · · = 0.35

fY |X(Y > 0.5|X < 1) = 0.23125
0.35 = 0.08094

Expected Values, Covariance, Correlation

Expected values (EX, EY ), variances (V X, V Y ), and standard deviations (SDX, SDY ) are calculated as
learned previously, in addition to updated rules of expectation.

Covariance Definition

When two random variables X and Y are not independent, it is frequently of interest to assess how strongly
they are related to one another. The covariance between two RVs X and Y is:

Cov(X,Y ) = E[(X − µX)(Y − µY )] = EXY − (EX)(EY )

For discrete RVs: ∑
x

∑
y

(x− EX)(y − EY )p(x, y)

For continuous RVs: ∫ ∞
−∞

∫ ∞
−∞

(x− EX)(y − EY )f(x, y) dxdy

Covariance Properties

Covariance

Covariance is a measure of how changes in one variable are associated with changes in a second variable.
Specifically, covariance measures the degree to which two variables are linearly associated. However, it is also
often used informally as a general measure of how monotonically related two variables are.

The major defect in covariance is that although it is a measure of linear dependence, its computed value
depends critically on the units of measurement. However, if we standardize the covariance (by dividing it by
standard deviations), we get a better measure of linear dependence, called correlation.

If X and Y are independent, the covariance of X and Y (Cov(X,Y ) = 0), but it does not hold in reverse.
Just because the covariance is 0 does not mean independence; it could mean they are not linearally related.
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Covariance Formulas

Cov(X,Y ) = EXY − (EX)(EY ) where

For discrete RVs:
EXY =

∑
(xyp(x, y))

For continuous RVs:
EXY =

∫ ∞
−∞

∫ ∞
−∞

xyf(x, y) dxdy

Discrete Example: Covariance

All products that equal 0 will not be shown in calculation

EXY = (100)(100)(.1) + (100)(200)(.2) + (250)(100)(.15)

+(250)(200)(.3) = 23750

Cov(X,Y ) = 23750− (175)(125) = 1875

Correlation

This is the standardized version of covariance. Correlation refers to the extent to which two variables have
a linear relationship with each other. Familiar examples of dependent phenomena include the correlation
between the physical statures of parents and their offspring, and the correlation between the demand for a
product and its price. Correlations are useful because they can indicate a predictive relationship that can be
exploited in practice.

Properties of Correlation

• describes the linear relationship between two quantitative variables X and Y
• −1 ≤ ρ ≤ 1
• There are no units of measurement associated with ρ (and will not change if units of measurement are

changed)
• Makes no distinction between X and Y

Warning!

Correlation is often used in misleading and incorrect ways. The main thing to remember with correlation
is that it implies only that there is an association; it does not mean that X causes Y . The only way to
determine causation is with experimentation.

Formulas

For both continuous and discrete RVs:

Corr(X,Y ) = ρXY = Cov(X,Y )
(SDX)(SDY )

The sample correlation is usually referred to as r
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Discrete Example: Covariance

Cov(X,Y ) = 1875, SDX = 75, SDY = 82.9156

ρXY = Cov(X,Y )
(SDX)(SDY ) = 1875

(75)(82.9156) = 0.301511

ρXY = 0.3015, which is close to 0 and positive, indicating that there is a weak, positive linear relationship
between X (auto insurance) and Y (home insurance). Generally, more people that have auto insurance will
also have home insurance through the same company (or at least in this company).

Continuous Joint Distributions

Let X and Y be continuous RVs. A joint probability density function f(x, y) for these two variables is
a function satisfying f(x, y) ≥ 0 and

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dxdy = 1

Then for any two dimensional set A

P [(X,Y ) ∈ A] =
∫∫
A

f(x, y) dxdy

Continuous Joint Distributions (con’t)

In particular, if A is the two-dimensional rectangle (x, y) : a ≤ x ≤ b, c ≤ y ≤ d, then

P [(X,Y ) ∈ A] =

P (a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y) dxdy

Continuous Distribution Example

A college professor wants to learn if there is a relationship between time spend on homework and the percent
of the homeowrk that is completed. Let X = the number of weeks after being distributed that an assignment
is turned in and Y = percent of completed assignment. Suppose X, Y have the following joint pdf:

f(x, y) =
{ 9

10xy
2 + 1

5 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
0 otherwise

Continuous Example: Probabilities

The probability that a randomly selected student will turn in an assignment in less than one week with more
than half of the assignment completed. That is, find P (X < 1, y > 0.5)

P (X < 1, Y > 0.5) =
∫ 1

0
∫ 1

0.5
9

10xy
2 + 1

5 dydx

6



=
∫ 1

0
[ 3

10xy
3 + 1

5y
]1

0.5 dx

=
∫ 1

0
( 21

80x+ 1
10x
)
dx

=
( 21

160x
2 + 1

10x
)
|10 = 0.23125

Continuous Marginal Distributions (marginal pdfs)

The marginal probability density function of X, denoted by fX(x), is given by

fX(x) =
∫

y

f(x, y) dy

Similarly, the marginal probability density function of Y , denoted by fY (y), is given by

fY (y) =
∫

x

f(x, y) dx

Continuous Example: Marginal Distribution of X

fX(x) =
∫

y
f(x, y) dy = fX(x) =

∫ 1
0

9
10xy

2 + 1
5 dy

=
[

3xy3

10 + y
5

]1

0
= 3x

10 + 1
5

fX(x) =
{ 3x

10 + 1
5 0 ≤ x ≤ 2

0 otherwise

Continuous Marginal Distribution of Y

fY (y) =
∫

x
f(x, y) dx = fY (y) =

∫ 2
0

9
10xy

2 + 1
5 dx

=
[

9x2y2

20 + x
5

]2

0
= 9y2

5 + 2
5

fY (y) =
{ 9y2

5 + 2
5 0 ≤ y ≤ 1

0 otherwise

Continuous Covariance

EXY =
∫ 2

0

∫ 1

0
xy

(
9
10xy

2 + 1
5

)
dydx

=
∫ 2

0

[
9x2y3

40 + xy2

10

]1

0
dx

=
∫ 2

0

(
9x2

40 + x
10

)
dx

=
[

9x3

120 + x2

20

]2

0
= 4

5

Cov(X,Y ) = 4
5 − ( 6

5 )( 13
20 ) = 0.02
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Continuous Correlation

Cov(X,Y ) = 0.02, SDX = 0.5416, SDY = 0.2661

ρXY = Cov(X,Y )
(SDX)(SDY ) = 0.02

(0.5416)(0.2661) = 0.138773

ρXY = 0.1388, which is close to 0 and positive, indicating that there is a weak, positive linear relationship
between X and Y . Generally, papers will be more complete as the time spent on them increases.

Rules of Expectation

Adding, subtracting, or multiplying RV by a constant

E(X ± a) = E(X)± E(a) = E(X)± a
V (X ± a) = V (X) + 0

E(aX) = aE(X)
V (aX) = a2V (X)

Rules of Expectation: Independent RVs

When X and Y are independent RVs:

E(X ± Y ) = E(X)± E(Y )
V (X ± Y ) = V (X) + V (Y )

SD(X ± Y ) =
√
V (X) + V (Y )

Rules involving constants still hold and can be applied

Rules of Expectation: Dependent RVs

When X and Y are dependent RVs:

E(X + Y ) = E(X) + E(Y )
V (X + Y ) = V (X) + V (Y ) + 2Cov(X,Y )

SD(X + Y ) =
√
V (X) + V (Y ) + 2Cov(X,Y )

E(X − Y ) = E(X)− E(Y )
V (X − Y ) = V (X) + V (Y )− 2Cov(X,Y )

SD(X − Y ) =
√
V (X) + V (Y )− 2Cov(X,Y )

Rules involving constants still hold and can be applied
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