Statistics 301: Probability and Statistics

Joint Distributions

Module 6
2018

Two Discrete Random Variables

The probability mass function (pmf) of a single discrete rv X specifies how much probability mass is placed on each possible value of X. The joint pmf of two discrete RVs X and Y describes how much probability mass is placed on each possible pair of values (x, y).

Definition

Let X and Y be two discrete RVs defined on the sample space \mathcal{S} of an experiment. The joint probability mass function $p(x, y)$ is defined for each pair of numbers (x, y) by

$$
p(x, y)=P(X=x \text { and } Y=y)
$$

It must be the case that $p(x, y) \geq 0$ and $\Sigma_{x} \Sigma_{y} p(x, y)=1$

Discrete Distribution Example

A large insurance agency services a large number of customers who have purchased both a homeowner's policy and an automobile policy from the agency. For each type of policy, a deductible is specified; the auto poilcy has deductibles of $\$ 100$ or $\$ 250$, whereas a homeowner's policy has deductibles of $\$ 0, \$ 100$ or $\$ 200$. Let $X=$ the deductible amount on the auto policy and Let $Y=$ the deductible amount on the homeowner's policy. The next slide contains the table distribution.

Find: $P(X=100$ and $Y=100)=p(100,100)$
$P(Y \geq 100)$

Discrete Distribution Example Data

			y	
	$p(x, y)$	0	100	200
x	100	0.20	0.10	0.20
	250	0.05	0.15	0.30

Discrete Example: Probabilities

$$
\begin{aligned}
& P(X=100 \text { and } Y=100)=p(100,100)=0.10 \\
& P(Y \geq 100)=p(100,100)+p(100,200)+p(250,100)+p(250,200)=0.1+0.2+0.15+0.3=0.75 \\
& \text { OR }(\text { complement rule }) \\
& 1-P(Y<100)=1-P(Y=0)=1-[p(100,0)+p(250,0)]=1-(0.2+0.05)=1-0.25=0.75
\end{aligned}
$$

Discrete Marginal Distributions (marginal pmfs)

The marginal probability mass function of X, denoted by $p_{X}(x)$, is given by

$$
p_{X}(x)=\sum_{y} p(x, y) \forall x
$$

Similarly, the marginal probability mass function of Y, denoted by $p_{Y}(y)$, is given by

$$
p_{Y}(y)=\sum_{x} p(x, y) \forall y
$$

Discrete Example: Marginal Distributions of X and Y

$$
\begin{aligned}
& p_{X}(100)=\sum_{y} p(x, y)=p(100,0)+p(100,100)+p(100,200)=0.5 \\
& p_{X}(250)=\sum_{y} p(x, y)=p(250,0)+p(250,100)+p(250,200)=0.5 \\
& p_{Y}(0)=\sum_{x} p(x, y)=p(100,0)+p(250,0)=0.25 \\
& p_{Y}(100)=\sum_{x} p(x, y)=p(100,100)+p(250,100)=0.25 \\
& p_{Y}(200)=\sum_{x} p(x, y)=p(100,200)+p(250,200)=0.5
\end{aligned}
$$

Discrete Marginal Distributions

$$
\begin{aligned}
& p_{X}(x)= \begin{cases}0.5 & x=100 \\
0.5 & x=250 \\
0 & \text { otherwise }\end{cases} \\
& p_{Y}(y)= \begin{cases}0.25 & y=0 \\
0.25 & y=100 \\
0.5 & y=200 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Independence of X and Y

Two random variables X and Y are independent if for every pair of x and y values,

$$
p(x, y)=p_{X}(x) \cdot p_{Y}(y) \quad \text { when } X \text { and } Y \text { are discrete }
$$

Or

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y) \quad \text { when } X \text { and } Y \text { are continuous }
$$

If the above are not satisfied for all (x, y), then all X and Y are said to be dependent

Discrete Example: Independence

Are X and Y independent?

$$
\begin{gathered}
? p(100,100)=p_{X}(100) \cdot p_{Y}(100) ? \\
\Rightarrow 0.1 \neq(0.5)(0.25)
\end{gathered}
$$

No, they are not independent

Continuous Distribution Example: Independence

Are X and Y independent?

$$
? f(x, y)=f_{X}(x) \cdot f_{Y}(y) ?
$$

Try $f(1,1)$

$$
\begin{gathered}
? f(1,1)=f_{X}(1) \cdot f_{Y}(1) ? \\
f(1,1)=0.35 ; f_{X}(1)=0.35 ; f_{Y}(1)=1.00 \\
\Rightarrow 0.35=(0.35)(1)
\end{gathered}
$$

So, X and Y are independent

Joint Conditional Probabilities

Recall the formula for conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

The same follows for discrete and continuous distributions:

$$
\begin{aligned}
p_{Y \mid X}(y \mid x) & =\frac{p(x, y)}{p_{X}(x)} \\
f_{Y \mid X}(y \mid x) & =\frac{f(x, y)}{f_{X}(x)}
\end{aligned}
$$

Discrete Example: Conditional Probabilities

$$
\begin{gathered}
p_{Y \mid X}(Y=200 \mid X=100)=\frac{p(100,200)}{p_{X}(100)} \\
=\frac{0.2}{0.5}=\frac{2}{5}
\end{gathered}
$$

Continuous Example: Conditional Probabilities

$$
\begin{gathered}
\qquad f_{Y \mid X}(Y>0.5 \mid X<1)=\frac{f(X<1, Y>0.5)}{f_{X}(X<1)} \\
f(X<1, Y>0.5)=\int_{0}^{1} \int_{0.5}^{1} f(x, y) d y d x \\
=\int_{0}^{1} \int_{0.5}^{1}\left(\frac{9 x y^{2}}{10}+\frac{1}{5}\right) d y d x=\cdots=0.23125 \\
=\int_{0}^{1}\left(\frac{3 x}{10}+\frac{1}{5}\right) d x=\cdots=0.35 \\
f_{X}(x<1)=\int_{0}^{1} f_{X}(x) d x \\
f_{Y \mid X}(Y>0.5 \mid X<1)=\frac{0.23125}{0.35}=0.08094
\end{gathered}
$$

Expected Values, Covariance, Correlation

Expected values $(E X, E Y)$, variances $(V X, V Y)$, and standard deviations $(S D X, S D Y)$ are calculated as learned previously, in addition to updated rules of expectation.

Covariance Definition

When two random variables X and Y are not independent, it is frequently of interest to assess how strongly they are related to one another. The covariance between two RVs X and Y is:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E X Y-(E X)(E Y)
$$

For discrete RVs:

$$
\sum_{x} \sum_{y}(x-E X)(y-E Y) p(x, y)
$$

For continuous RVs:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-E X)(y-E Y) f(x, y) d x d y
$$

Covariance Properties

Covariance

Covariance is a measure of how changes in one variable are associated with changes in a second variable. Specifically, covariance measures the degree to which two variables are linearly associated. However, it is also often used informally as a general measure of how monotonically related two variables are.

The major defect in covariance is that although it is a measure of linear dependence, its computed value depends critically on the units of measurement. However, if we standardize the covariance (by dividing it by standard deviations), we get a better measure of linear dependence, called correlation.

If X and Y are independent, the covariance of X and $Y(\operatorname{Cov}(X, Y)=0)$, but it does not hold in reverse. Just because the covariance is 0 does not mean independence; it could mean they are not linearally related.

Covariance Formulas

$\operatorname{Cov}(X, Y)=E X Y-(E X)(E Y)$ where
For discrete RVs:

$$
E X Y=\sum(x y p(x, y))
$$

For continuous RVs:

$$
E X Y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y
$$

Discrete Example: Covariance

All products that equal 0 will not be shown in calculation

$$
\begin{gathered}
E X Y=(100)(100)(.1)+(100)(200)(.2)+(250)(100)(.15) \\
+(250)(200)(.3)=23750 \\
\operatorname{Cov}(X, Y)=23750-(175)(125)=1875
\end{gathered}
$$

Correlation

This is the standardized version of covariance. Correlation refers to the extent to which two variables have a linear relationship with each other. Familiar examples of dependent phenomena include the correlation between the physical statures of parents and their offspring, and the correlation between the demand for a product and its price. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice.

Properties of Correlation

- describes the linear relationship between two quantitative variables X and Y
- $-1 \leq \rho \leq 1$
- There are no units of measurement associated with ρ (and will not change if units of measurement are changed)
- Makes no distinction between X and Y

Warning!

Correlation is often used in misleading and incorrect ways. The main thing to remember with correlation is that it implies only that there is an association; it does not mean that X causes Y. The only way to determine causation is with experimentation.

Formulas

For both continuous and discrete RVs:

$$
\operatorname{Corr}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{(S D X)(S D Y)}
$$

The sample correlation is usually referred to as r

Discrete Example: Covariance

$\operatorname{Cov}(X, Y)=1875, S D X=75, S D Y=82.9156$

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{(S D X)(S D Y)}=\frac{1875}{(75)(82.9156)}=0.301511
$$

$\rho_{X Y}=0.3015$, which is close to 0 and positive, indicating that there is a weak, positive linear relationship between X (auto insurance) and Y (home insurance). Generally, more people that have auto insurance will also have home insurance through the same company (or at least in this company).

Continuous Joint Distributions

Let X and Y be continuous RVs. A joint probability density function $f(x, y)$ for these two variables is a function satisfying $f(x, y) \geq 0$ and

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

Then for any two dimensional set A

$$
P[(X, Y) \in A]=\iint_{A} f(x, y) d x d y
$$

Continuous Joint Distributions (con't)

In particular, if A is the two-dimensional rectangle $(x, y): a \leq x \leq b, c \leq y \leq d$, then

$$
\begin{gathered}
P[(X, Y) \in A]= \\
P(a \leq X \leq b, c \leq Y \leq d)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y
\end{gathered}
$$

Continuous Distribution Example

A college professor wants to learn if there is a relationship between time spend on homework and the percent of the homeowrk that is completed. Let $X=$ the number of weeks after being distributed that an assignment is turned in and $Y=$ percent of completed assignment. Suppose X, Y have the following joint pdf:

$$
f(x, y)= \begin{cases}\frac{9}{10} x y^{2}+\frac{1}{5} & 0 \leq x \leq 2,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Continuous Example: Probabilities

The probability that a randomly selected student will turn in an assignment in less than one week with more than half of the assignment completed. That is, find $P(X<1, y>0.5)$
$P(X<1, Y>0.5)=\int_{0}^{1} \int_{0.5}^{1} \frac{9}{10} x y^{2}+\frac{1}{5} d y d x$
$=\int_{0}^{1}\left[\frac{3}{10} x y^{3}+\frac{1}{5} y\right]_{0.5}^{1} d x$
$=\int_{0}^{1}\left(\frac{21}{80} x+\frac{1}{10} x\right) d x$
$=\left.\left(\frac{21}{160} x^{2}+\frac{1}{10} x\right)\right|_{0} ^{1}=0.23125$

Continuous Marginal Distributions (marginal pdfs)

The marginal probability density function of X, denoted by $f_{X}(x)$, is given by

$$
f_{X}(x)=\int_{y} f(x, y) d y
$$

Similarly, the marginal probability density function of Y, denoted by $f_{Y}(y)$, is given by

$$
f_{Y}(y)=\int_{x} f(x, y) d x
$$

Continuous Example: Marginal Distribution of X
$f_{X}(x)=\int_{y} f(x, y) d y=f_{X}(x)=\int_{0}^{1} \frac{9}{10} x y^{2}+\frac{1}{5} d y$
$=\left[\frac{3 x y^{3}}{10}+\frac{y}{5}\right]_{0}^{1}=\frac{3 x}{10}+\frac{1}{5}$

$$
f_{X}(x)= \begin{cases}\frac{3 x}{10}+\frac{1}{5} & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Continuous Marginal Distribution of Y

$f_{Y}(y)=\int_{x} f(x, y) d x=f_{Y}(y)=\int_{0}^{2} \frac{9}{10} x y^{2}+\frac{1}{5} d x$
$=\left[\frac{9 x^{2} y^{2}}{20}+\frac{x}{5}\right]_{0}^{2}=\frac{9 y^{2}}{5}+\frac{2}{5}$

$$
f_{Y}(y)= \begin{cases}\frac{9 y^{2}}{5}+\frac{2}{5} & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Continuous Covariance

$$
E X Y=\int_{0}^{2} \int_{0}^{1} x y\left(\frac{9}{10} x y^{2}+\frac{1}{5}\right) d y d x
$$

$=\int_{0}^{2}\left[\frac{9 x^{2} y^{3}}{40}+\frac{x y^{2}}{10}\right]_{0}^{1} d x$
$=\int_{0}^{2}\left(\frac{9 x^{2}}{40}+\frac{x}{10}\right) d x$
$=\left[\frac{9 x^{3}}{120}+\frac{x^{2}}{20}\right]_{0}^{2}=\frac{4}{5}$
$\operatorname{Cov}(X, Y)=\frac{4}{5}-\left(\frac{6}{5}\right)\left(\frac{13}{20}\right)=0.02$

Continuous Correlation

$\operatorname{Cov}(X, Y)=0.02, S D X=0.5416, S D Y=0.2661$

$$
\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{(S D X)(S D Y)}=\frac{0.02}{(0.5416)(0.2661)}=0.138773
$$

$\rho_{X Y}=0.1388$, which is close to 0 and positive, indicating that there is a weak, positive linear relationship between X and Y. Generally, papers will be more complete as the time spent on them increases.

Rules of Expectation

Adding, subtracting, or multiplying RV by a constant

$$
\begin{gathered}
E(X \pm a)=E(X) \pm E(a)=E(X) \pm a \\
V(X \pm a)=V(X)+0 \\
E(a X)=a E(X) \\
V(a X)=a^{2} V(X)
\end{gathered}
$$

Rules of Expectation: Independent RVs

When X and Y are independent RVs:

$$
\begin{aligned}
E(X \pm Y) & =E(X) \pm E(Y) \\
V(X \pm Y) & =V(X)+V(Y) \\
S D(X \pm Y) & =\sqrt{V(X)+V(Y)}
\end{aligned}
$$

Rules involving constants still hold and can be applied

Rules of Expectation: Dependent RVs

When X and Y are dependent RVs:

$$
\begin{gathered}
E(X+Y)=E(X)+E(Y) \\
V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y) \\
S D(X+Y)=\sqrt{V(X)+V(Y)+2 \operatorname{Cov}(X, Y)} \\
E(X-Y)=E(X)-E(Y) \\
V(X-Y)=V(X)+V(Y)-2 \operatorname{Cov}(X, Y) \\
S D(X-Y)=\sqrt{V(X)+V(Y)-2 \operatorname{Cov}(X, Y)}
\end{gathered}
$$

Rules involving constants still hold and can be applied

