
Statistics 301: Probability and Statistics
Sampling Distributions

Module 7
2018

Three Types of Distributions

data distribution
the distribution of a variable in a sample

population distribution
the probability distribution of a single observation of a variable

sampling distribution
the probability distribution of a statistic

Terms I

sampling distribution: a probability distribution of a statistic; it is a distribution of all possible samples
(random samples) from a population and how often each outcome occurs in repeated sampling (of the same
size n). Given simple random samples of size n from a given population with a measured characteristic such
as mean X, proportion (p̂), or standard deviation (s) for each sample, the probability distribution of all the
measured characteristics is called a sampling distribution. Use of statistic to estimate the parameter is the
main function of inferential statistics as it provides the properties of the statistic.

Terms II

law of large numbers states that as the number of repetitions of an experiment is increased, the relative
frequency obtained in the experiment tends to become ever closer to the theoretical probability. Even though
the outcomes do not happen according to any set pattern or order (overall), the long-term observed relative
frequency will approach the theoretical probability

Central Limit Theorem (CLT)

Definition
The sampling distribution of the sample statistic is approximately normal with mean µX and standard
deviation (of the sampling distribution of the sample mean) se = σX√

n
, provided n is sufficiently large.

Sampling distribution of the Sample Mean

If we take n observations of a quantitative variable and then compute the mean (x̄) of those observations in
the sample, then x̄ is the sample mean statistic.

Assumptions: Each observation x has the same probability distribution with mean µ and standard deviation
σ, and the observations are independent.
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Properties of the Sampling Distribution of x̄

(1) The mean of the sampling distribution is µ

(2) The standard deviation of the sampling distribution is se = σ√
n

(3) The shape of the sampling distribution becomes more like a normal distribution as n increases

Sampling distribution of the Sample Mean

X ∼ N (µ, semean)

Standard error of the mean: σX = semean = σ√
n

z = X − µ
semean

Sample sizes should be n ≥ 30 for the sample mean If a distribution is already inherently normal, the sample
size stipulation can be ignored.

Sampling distribution of the Sample Proportion (p̂)

If we make n observations, and count the number of observations on which an outcome happens (call this x),
then p̂ = x

n is the sample proportion statistic.

Assumptions: x has a binomial distribution where n is the number of trials and the probability of the outcome
on each trial is p.

Properties of the Sampling Distribution of p̂

(1) The mean of the sampling distribution is p.

(2) The standard deviation of the sampling distribution is
√
pq/n.

(3) The shape of the sampling distribution becomes more like a normal distribution as n increases.

Sampling distribution of p̂

p̂ ∼ N (p, sep̂)

Standard error of the proportion: σp̂ = sep̂ =
√
pq

n

z = p̂− p
sep̂

Sample sizes should be n ≥ 60 for the sample proportion
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Sampling distribution of the Sample Sum (Total)

If we take n observations of a quantitative variable and then compute the mean total (sum) (τ̂ = nx̄) of those
observations in the sample, then τ̂ is the sample total statistic.

Assumptions: Each observation x has the same probability distribution with mean nµ and standard deviation√
nσ, and the observations are independent.

Properties of the Sampling Distribution of τ

(1) The mean total of the sampling distribution is τ

(2) The standard deviation (of the total) of the sampling distribution is se =
√
nσ

(3) The shape of the sampling distribution becomes more like a normal distribution as n increases

Sampling distribution of the Sample Sum (Total)

τ̂ = nX τ = nµ sesum =
√
nσ

τ̂ ∼ N(τ, sesum) with sesum =
√
nσ

z = nX − nµ
sesum

= τ̂ − τ
sesum

Simulation Examples to Show CLT

To simulate the CLT and how it works, a random sample of 500 observations is taken from three different
distributions: normal, exponential, and binomial. The purpose is to demonstrate the distribution of the
sample mean; regardless of the original distribution, the distribution of the sample mean will be approximately
normal.

CLT with normal

Simulation of a random sample of 500 observations from a normal distribution with mean of 100 and sd of 10

rnorm(): randomly generates values from the normal distribution in R

rnorm(n,mean= ,sd= )
- n: number of observations
- mean: mean to use for random sample
- sd: standard deviation for random sample

CLT with normal

Sample with n = 500
x=rnorm(500,mean=100,sd=10); cbind(mean(x),sd(x))

[,1] [,2]
[1,] 99.3223 9.65044
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hist(x,prob=TRUE,main='Random sample 1')
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CLT with normal

x=rnorm(500,mean=100,sd=10); mean(x)

[1] 100.224
hist(x,prob=TRUE,ylim=c(0,0.04),main='Random sample 2')
curve(dnorm(x,mean=100,sd=10),70,130,add=TRUE,lwd=2,col="red")

Random sample 2
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CLT simulation with normal

Simluation Process

• Set the mean, standard deviation and sample size
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• Create empty vector to contain sample means from for-loop
• For-loop calculates the sample means from 500 simulations of sample size 5 (each sample has 5

observations and I am simulating 500 samples of size 5 and will get 500 sample means)

CLT simulation with normal

mu=100; sigma=10; n=5; xbar=rep(0,500)
for (i in 1:500)
{ xbar[i]=mean(rnorm(n,mean=mu,sd=sigma)) }
hist(xbar,prob=TRUE,breaks=12,xlim=c(70,130),ylim=c(0,0.1))

Histogram of xbar
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Exponential Distribution

We will look at a random sample of 500 observations from an exponential distribution with rate of 1. The
exponential distribution is one that models (describes) the time between events in a Poisson process, i.e. a
process in which events occur continuously and independently at a constant average rate, λ.

f(x) = λe−λx

With
EX = 1

λ

V X = 1
λ2

CLT with exponential

rexp(): randomly generates values from the exponential distribution in R

rexp(n,rate= )
- n: number of observations
- rate: the rate is rate=1/mean (default=1)
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CLT with exponential

Sample with n = 500
x=rexp(500); mean(x)

[1] 0.925837
hist(x,prob=TRUE,main='Random sample 1')

Random sample 1
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CLT with exponential

x=rexp(500); mean(x)

[1] 0.970876
hist(x,prob=TRUE,main='Random sample 2')
curve(dexp(x),add=TRUE,lwd=2,col="red")

Random sample 2
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CLT simulation with exponential

Simluation Process

• Set the mean, standard deviation and sample size
• Create empty vector to contain sample means from for-loop
• For-loop calculates the sample means from 500 simulations of sample size 30 (each sample has 30

observations and I am simulating 500 samples of size 30 and will get 500 sample means)

CLT simulation with exponential

mu=1; sigma=1; n=30; xbar=rep(0,500)
for (i in 1:500)
{ xbar[i]=mean(rexp(n)) }
hist(xbar,prob=TRUE,breaks=12)

Histogram of xbar
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Binomial Distribution

The binomial distribution with parameters n and p is the discrete probability distribution of the number of
successes in a sequence of n independent yes/no experiments, each of which yields success with probability p.

We will look at a random sample of 500 observations from a binomial distribution with p = 0.8
(q = 1− p = 1− .8 = 0.2) and n = 10

P (X = x) =
(
n

x

)
pxqn−x

With
EX = np

V X = npq

CLT with binomial

rbinom(): randomly generates values from the binomial distribution in R
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rbinom(n,size= ,prob= )
- n: number of observations
- size: number of trials
- prob: probability of success on each trial

CLT with binomial

Sample with p = 0.8 and size = 10 n = 500
y=rbinom(500,10,.8); mean(y)

[1] 8.048
hist(y,prob=T,main='Random sample 1')
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CLT with binomial

y=rbinom(500,10,.8); mean(y)

[1] 8.052
hist(y,prob=T,main='Random sample 2')
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Random sample 2
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CLT simulation with binomial

Simluation Process

• Set the mean, standard deviation and sample size
• Create empty vector to contain sample means from for-loop
• For-loop calculates the sample means from 500 simulations of sample size 30 (each sample has 30

observations and I am simulating 500 samples of size 30 and will get 500 sample means)

CLT simulation with binomial

mu=8; sigma=1.26; n=10; xbar=rep(0,500)
for (i in 1:500)
{ xbar[i]=mean(rbinom(n,10,.8)) }
hist(xbar,prob=TRUE,breaks=15)

Histogram of xbar
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CLT for sample mean (X) and sample sum/total (τ̂)

for sample mean (X) and total (τ̂)

The level of a particular pollutant, nitrogen dioxide (NO2), in the exhaust of a hypothetical model of car,
that when driven in city traffic, has a mean level of 2.1 grams per mile (g/m) and a standard deviation of 0.3
g/m. Suppose a company has a fleet of 35 of these cars.

(a) What is the mean and standard deviation of the sampling distribution of the sample mean?

mean: µX = µ = 2.1 and semean = σ√
n

= 0.3√
35 = 0.0507

X ∼ N(µ, semean) = X ∼ N(2.1, 0.0507)

CLT for X and τ̂ solutions

(b) find the probability that the mean NO2 level is less than 2.03 g/m

P (X < 2.03) = P

(
Z <

2.03− 2.1
0.0507

)
= P (Z < −1.38) = 0.083793

(c) Mandates by the EPA state that the average of the fleet of these cars cannot exceed 2.2 g/m, find the
probability that the fleet NO2 levels from their fleet exceed the EPA mandate

P (X > 2.2) = 1− P
(
Z <

2.2− 2.1
0.0507

)
= 1− P (Z < 1.97) = 1− 0.975581 = 0.024419

CLT for X and τ̂ solutions

(d) At most, 25% of these cars exceed what mean NO2 value?

Find the z score that represents the top 25%, which is the same as the bottom 75% (is also Q3) and what is
needed to find z0.75 = 0.67449. Next use z = X−µ

semean
and solve for X: X = z(semean) + µ

X = (0.67449)(0.0507) + 2.1 = 2.134197

CLT for X and τ̂ solutions

(e) what is the mean and standard deviation of the total amount (sum), in g/m, of NO2 in the exhaust for
the fleet?

τ = nµ = 35(2.1) = 73.5

sesum =
√
nσ =

√
35(0.3) = 1.774824

τ̂ ∼ N(τ, sesum) = τ̂ ∼ N(73.5, 1.7748)
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CLT for X and τ̂ solutions

(f) find the probability that the total amount of NO2 for the fleet is between 70 and 75 g/m

P (70 < τ̂ < 75) = P

(
70− 73.5

1.7448 < Z <
75− 73.5

1.7748

)
= P (−2.01 < Z < 0.86) = P (Z < 0.86)− P (Z < −2.01)

= 0.805105− 0.022216 = 0.78289

CLT for proportion (p̂)

Mars company claims that 10% of the M&M’s it produces are green. Suppose that candies are packaged at
random in bags that contain 60 candies.
(a) Describe the sampling distribution of the sample proportion (what should the distribution look like?);
calculate the mean proportion and standard deviation of the sampling distribution of the sample proportion
of green M&M’s in bags that contain 60 candies (calculate p and se).
(b) What is the probability that a bag of 60 candies will have more than 13% green M&M’s?

CLT for p̂ solutions

(a) Describe the sampling distribution of the sample proportion; calculate the mean proportion and standard
deviation of the sampling distribution of the sample proportion of green M&M’s in bags that contain 60
candies.

The distribution of the sample proportion will be approximately normal since n ≥ 60. The mean proportion
p = 0.1 and the standard error is

√
pq
n =

√
(.1)(.9)

60 = 0.0387 (the standard deviation of the sampling
distribution of the sample proportion). Thus

p̂ ∼ N(0.1, 0.0387)

CLT for p̂ solutions

(b) What is the probability that a bag of 60 candies will have more than 13% green M&M’s?

P (p̂ > 0.13) = P

(
Z >

0.13− 0.1
0.0387

)
= P (Z > 0.78) = 1− P (Z < 0.78) = 1− 0.782305

= 0.2177
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