Sampling distribution

μ and σ^{2}
The population consists of $\{1,2,3,4\}$, and we will take samples of $n=2$ to look at the sampling distribution (all possible samples)

$$
\begin{gathered}
\mu=\frac{\sum Y_{i}}{N}=\frac{1+2+3+4}{4}=2.5 \\
\sigma^{2}=\frac{\sum\left(Y_{i}-\mu\right)^{2}}{N}=\frac{(1-2.5)^{2}+(2-2.5)^{2}+(3-2.5)^{2}+(4-2.5)^{2}}{4}=\frac{5}{4}=1.25
\end{gathered}
$$

Sampling without replacement (swor)

Sampling without replacement implies dependence and it also the way we treat an finite population.
$E(\bar{y})$ and $\hat{V}(\bar{y})$

$$
\begin{gathered}
E(\bar{y})=\sum \bar{y} p(\bar{y}) \\
=\frac{1}{6}(1.5+2+2.5+2.5+3+3.5)=2.5
\end{gathered}
$$

Showing that $E(\bar{y})=\mu$. This is the mean of the sampling distribution, which is equal to the population mean.

$$
\hat{V}(\bar{y})=\sum(\bar{y}-\mu)^{2} p(\bar{y})=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)=\left(1-\frac{n}{N}\right) \frac{s^{2}}{n}
$$

Where $E\left(s^{2}\right)=\frac{s_{i}^{2}}{n}$ where s_{i}^{2} is the $i^{t h}$ sample variance and n here is the number of samples

$$
E\left(s^{2}\right)=\frac{0.5+2+4.5+0.5+2+0.5}{6}=\frac{5}{3}
$$

Sampling without replacement

Sample	Frequency	$P($ sample $)$	\bar{y}_{i}	s_{i}^{2}	$\hat{\tau}$	$\hat{V}(\bar{y})$
$\{1,2\}$	2	$\frac{1}{6}$	1.5	0.5	6	0.125
$\{1,3\}$	2	$\frac{1}{6}$	2	2	8	0.5
$\{1,4\}$	2	$\frac{1}{6}$	2.5	4.5	10	1.125
$\{2,3\}$	2	$\frac{1}{6}$	2.5	0.5	10	.125
$\{2,4\}$	2	$\frac{1}{6}$	3	2	12	0.5
$\{3,4\}$	2	$\frac{1}{6}$	3.5	0.5	14	0.125

So now

$$
\hat{V}(\bar{y})=\left(1-\frac{n}{N}\right) \frac{s^{2}}{n}=\left(1-\frac{2}{4}\right)\left(\frac{5 / 3}{2}\right)=\frac{5}{12}
$$

Which is the same as

$$
\hat{V}(\bar{y})=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)=\frac{5 / 4}{2}\left(\frac{4-2}{4-1}\right)=\frac{5}{12}
$$

Handy but only if you know the population variance.

Sampling with replacement

Sample	Frequency	P(sample)	\bar{y}_{i}	s_{i}^{2}	$\hat{\tau}$	$\hat{V}(\bar{y})$
$\{1,1\}$	1	$\frac{1}{16}$	1	0	4	0
$\{1,2\}$	2	$\frac{2}{16}$	1.5	0.5	6	0.125
$\{1,3\}$	2	$\frac{2}{16}$	2	2	8	0.5
$\{1,4\}$	2	$\frac{2}{16}$	2.5	4.5	10	1.125
$\{2,2\}$	1	$\frac{1}{16}$	2	0	8	0
$\{2,3\}$	2	$\frac{2}{16}$	2.5	0.5	10	.125
$\{2,4\}$	2	$\frac{2}{16}$	3	2	12	0.5
$\{3,3\}$	1	$\frac{1}{16}$	3	0	12	0
$\{3,4\}$	2	$\frac{1}{16}$	3.5	0.5	14	0.125
$\{4,4\}$	1	$\frac{1}{16}$	4	0	16	0

Sampling with replacement (swr)

Sampling with replacement implies a few things. One is independence (not always but often), another is that it will produce more "extreme" samples, and it also the way we would treat an infinite population.
$E(\bar{y})$ and $\hat{V}(\bar{y})$

$$
\begin{gathered}
E(\bar{y})=\sum \bar{y} p(\bar{y}) \\
=\frac{1}{16}(1+2+3+4)+\frac{2}{16}(1.5+2+2.5+2.5+3+3.5)=2.5
\end{gathered}
$$

Showing that again, $E(\bar{y})=\mu$. This is the mean of the sampling distribution, which is equal to the population mean.

$$
\hat{V}(\bar{y})=\sum(\bar{y}-\mu)^{2} p(\bar{y})=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)=\left(1-\frac{n}{N}\right) \frac{s^{2}}{n}
$$

Where $E\left(s^{2}\right)=\frac{s_{i}^{2}}{n}$ where s_{i}^{2} is the $i^{t h}$ sample variance and n here is the number of samples

$$
E\left(s^{2}\right)=\frac{0+0.5+2+4.5+0+0.5+2+0+0.5+0}{10}=1
$$

So now

$$
\hat{V}(\bar{y})=\left(1-\frac{n}{N}\right) \frac{s^{2}}{n}=\left(1-\frac{2}{4}\right)\left(\frac{1}{2}\right)=\frac{1}{4}
$$

A larger variance for sampling with replacement.

