R probability commands

Binomial, Poisson, and Normal Distributions

Stat 251 Spring 2019

The Binomial distribution

In shorthand notation:

$$
X \sim B(n, p)
$$

For our example here:

$$
X \sim B(10,0.55)
$$

R code for the binomial:
$\operatorname{dbinom}(x, n, p)$ where x is the argument, n is the sample size, and p is the probability of success
Find the probability that there are exactly 0 successes

$$
P(X=0)
$$

dbinom(0,10, 0.55)
[1] 0.0003405063

Find the probability that there are exactly 5 successes

```
        P(X=5)
dbinom(5,10,.55)
[1] 0.2340327
```

Find the probability that there are between 2 and 4 successes

$$
P(2<=X<=4)=P(2)+P(3)+P(4)
$$

Here the sum() command is needed for a range of values. The range is denoted as $2: 4$, as in 'between 2 and 4'
$\operatorname{sum}($ dbinom $(2: 4,10, .55))$
[1] 0.2570605

The Poisson distribution

In shorthand notation:

$$
X \sim P(\mu)
$$

For our example here (say that the average number of accidents along a certain highway are 3 per week):

$$
X \sim P(3)
$$

R code for poisson:
dpois (x, mu) where x is the argument and mu is the mean

Find the probability that there are 0 successes (0 accidents in the next week)

$$
P(X=0)
$$

dpois (0,3)
[1] 0.04978707
\#\# Find the probability that there are exactly 5 accidents in the next week

$$
P(X=5)
$$

dpois $(5,3)$
[1] 0.1008188
\#\# Find the probability that there is at least one accident in the next week \#\#\#\# Note that the complement rule is needed since $0 \leq x<\infty$

$$
P(X \geq 1)=1-P(X<1)=1-P(X=0)
$$

1-dpois $(0,3)$
[1] 0.9502129
\#\# Find the probability that there are between 2 and 4 accidents in the next week

$$
P(2 \leq X \leq 4)=P(2)+P(3)+P(4)
$$

$\operatorname{sum}($ dpois $(2: 4,3))$
[1] 0.616115

Normal distribution

In shorthand notation:

$$
X \sim N(\mu, \sigma)
$$

where $\mathrm{mu}(\mu)$ is the mean and sigma (σ) is the standard deviation

For our example here:

$$
X \sim N(72.6,4.78)
$$

R code for the normal:
pnorm(x, mu, sigma) where x is the argument, mu is the mean, and sigma is the standard deviation. pnorm() works just like the table, as in area to the left. Must use complement rule for area to the right

Find the probability that the speeds of drivers on I-5 is less than 80 mph

$$
P(X<80)=P(X \leq 80)
$$

pnorm(80, 72.6,4.78)
[1] 0.939203
\#\# Find the probability that the speeds of drivers on I-5 is between 60 and 80 mph

$$
P(60<X<80)
$$

pnorm(80,72.6,4.78)-pnorm(60,72.6,4.78)
[1] 0.9350083

Find the probability that the speeds of drivers on I-5 is more than 70 mph

$$
P(X>70)
$$

1-pnorm(70, 72.6,4.78)
[1] 0.7067562

Find the speed that represents the top 5% of speeds (remember that the top $5 \%=$ bottom 95%)

We will need to use qnorm (\%,mu, sigma) and it will find the value of X rather than a probability qnorm(.95, $72.6,4.78$)
[1] 80.4624

