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Abstract. The majority of species interact with at least several others. We develop simple genetic models of coevo-
lution between three species where interactions are mediated by quantitative traits. We assume that one of the species
has two quantitative traits, each of which governs its interaction with one of the other two species. We use this model
to explore how genetic correlations between the two traits in the multivariate species shape the evolutionary dynamics
and outcomes of three species interactions. Our results suggest that genetic correlations are most important when at
least one of the interactions is between a predator and prey or parasite and host. In these cases, genetic correlations
between traits lead to a wide variety of novel coevolutionary outcomes and dynamics. In particular, genetic correlations
can affect the existence and stability of coevolutionary equilibrium points, and they can lead to recurrent or permanent
maladaptation. When the three species interact only as competitors or mutualists, however, genetic correlations have
no effect on the outcome of coevolution. In all cases, our results reveal the surprising conclusion that both positive
and negative genetic correlations between traits have qualitatively identical effects on coevolutionary dynamics.
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The vast majority of species interact with a multitude of
others, whether as predators, prey, competitors, or mutualists.
To take a familiar example, the human population interacts
with hundreds of different species of parasites alone (Kiple
1993). Plants, too, face an incredible diversity of interactions.
Tetraploid populations of the perennial plant Heuchera gros-
sulariifolia, for instance, interact mutualistically with several
pollinator species (Segraves and Thompson 1999), are par-
asitized by four species of phytophagous insects (Thompson
et al. 1997; Nuismer and Thompson 2001), are regularly in-
fected by a rust fungus, and face chronic competition from
their diploid progenitors. As Darwin emphasized in his met-
aphor of the tangled bank, these diverse interactions are not
only a source of natural selection, but also an inevitable con-
sequence of its action (Darwin 1859; see also Thompson
1994).

Despite the abundance of empirical evidence suggesting
that most species interact and coevolve with at least several
others, the majority of coevolutionary models have focused
only on pairwise interactions involving a single trait in each
of the two interacting species. In fact, we know of only one
model that has explicitly analyzed the dynamics of multi-
specific coevolution, demonstrating several novel and un-
expected dynamical consequences of adding a third species
(Gomulkiewicz et al. 2003). As is the case for many models
of coevolution, however, this model assumed that interactions
between species are mediated by only a single trait or genetic
locus (e.g., Seger 1988; Gavrilets and Hastings 1998; Nuis-
mer et al. 1999; Case and Taper 2000). In reality, though,
most species engage in multiple interactions, each of which
may be mediated by different traits or sets of loci (Rausher
1996; Brodie and Brodie 1999; Benkman et al. 2001; Dupas
et al. 2003). More generally, coevolution between multiple
species is likely to be mediated by suites of genetically cor-
related characters. These empirical observations suggest that
multispecific coevolution may frequently be influenced by

the correlation structure of traits involved in different inter-
actions.

Although no general theory has been developed for the
effects of genetic correlations on coevolutionary dynamics,
a well-developed body of theory exists for single species
(e.g., Lande 1979, 1982; Lande and Arnold 1983; Slatkin
1984; Charlesworth 1993). This work has shown that if the
adaptive landscape is smooth, genetic correlations between
traits do not prevent a population from evolving to the global
fitness optimum (Lande 1979). Genetic correlations can, how-
ever, slow the approach to this optimum by altering the tra-
jectory of evolution (Lande 1979). Thus, in simple single-
species models, the influence of genetic correlations is gen-
erally quantitative rather than qualitative. In contrast, more
complicated models that incorporate frequency dependence
(e.g., sexual selection), demonstrate that genetic correlations
can lead to qualitative shifts in evolutionary dynamics (e.g.,
Lande 1981). It is this latter result that suggests genetic cor-
relations may play a central role in shaping the dynamics and
outcome of coevolution.

Here we make a first attempt to address these issues by
developing models of multispecific coevolution that explic-
itly incorporate genetic correlations. Our general approach is
to analyze two different types of models, each based upon
quite different biological assumptions. The first approach we
take is to extend single species models for the evolution of
correlated traits (Lande 1979; Charlesworth 1993) to coevo-
lution between multiple species. The second uses individual-
based numerical simulations that explicitly incorporate mul-
tilocus genetics (e.g., Dieckmann and Doebeli 1999; Doebeli
and Dieckmann 2000). The former approach uses determin-
istic equations with fixed genetic variances and covariances,
whereas the latter approach uses stochastic simulations in
which genetic variances and covariances can evolve. How-
ever, the stochastic models should not be viewed as a test of
the deterministic models (or vice versa). Rather, the two ap-
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proaches represent different biological assumptions and
should be viewed as complementary. It is our hope that this
two pronged modeling approach will yield results of greater
generality than could be achieved by either approach in iso-
lation.

We use these models to investigate the coevolutionary dy-
namics of a breadth of ecological interactions; in fact we
consider simple models of all possible combinations of com-
petitive, mutualistic, and antagonistic interactions between
three species. The basic structure of our models is that there
is one species—the multivariate or focal species—in which
two traits are evolving that each determine coevolutionary
interactions with a single trait in another species. Thus, there
are two pairs of coevolving traits, and the evolutionary dy-
namics of these two trait pairs may be linked by a genetic
correlation between the two traits in the focal species. The
interaction in each of the two trait pairs may be competitive,
mutualistic, or antagonistic, and for all the resulting ecolog-
ical scenarios we test the effects of genetic correlation against
the baseline case in which the two traits pairs coevolve in-
dependently of each other. Our overarching goal is to identify
ecological constellations for which varying the degree of ge-
netic correlations between the two traits in the focal species
leads to qualitative changes in the coevolutionary dynamics
of the three species system. More specifically, we address
the following questions: What qualitative changes in the co-
evolutionary dynamics of multispecies interactions can be
generated by genetic correlations? What are the ecological
scenarios in which genetic correlations have the greatest ef-
fects? Can genetic correlations generate constraints that lead
to maladaptation in one or both of the species, thus potentially
fostering the evolution of ecological specialization?

THE GENERAL MODEL

We assume a single, closed community composed of three
interacting species labeled X, Y, and Z. The interactions be-
tween these species are mediated by quantitative traits. We
further assume that species X (the focal or multivariate spe-
cies) interacts with both species Y and Z, while species Y
and species Z interact only with species X and not each other.
Thus, our model is capable of describing all simple ecological
interactions between three species. Our model is not, how-
ever, capable of considering more complex interactions such
as two parasites that coevolve with a shared host and with
each other due to resource competition. Given the exploratory
nature of our models, this would not seem to be a serious
restriction, and the exploration of more complicated scenarios
is left for future work.

Interactions between species are assumed to be mediated
by the degree of phenotypic matching between quantitative
traits (Dieckmann et al. 1995; Doebeli 1997; Gavrilets 1997).
Specifically, we assume that the interaction between species
X and Y depends upon the phenotypic distance between quan-
titative traits x1 and y. Similarly, the interaction between
species X and Z is assumed to depend upon the phenotypic
distance between quantitative traits x2 and z. Assuming a
simple exponential relationship between fitness and pheno-
typic distance, and that the fitness of species X is determined
multiplicatively by its interactions with Y and Z, the fitness

of individuals with the phenotypes (x1, x2), y, and z, respec-
tively can be written as:

2W(x , x ) 5 exp[2a (x 2 y) ]f dy1 2 E xy 1 y5 6
23 exp[2a (x 2 z) ]f dz , (1a)E xz 2 z5 6

2W(y) 5 exp[2a (x 2 y) ]f dx , and (1b)E yx 1 x 11

2W(z) 5 exp[2a (x 2 z) ]f dx , (1c)E zx 2 x 22

where fi is the frequency distribution of trait i, and aij de-
termines how the fitness of species i is effected by interactions
with species j. If aij is positive, individuals of species i have
increased fitness when encountering species j individuals of
similar phenotype. In contrast, if aij is negative, individuals
of species i benefit from interacting with species j individuals
of dissimilar phenotypes. Any pairwise interaction between
two traits is qualitatively described by the signs of the two
corresponding a-values. When describing the various pos-
sible types of sign combinations, we adhere to the following
terminology. When both a-values in an interaction pair are
negative, we call it a competitive interaction; in this case,
the traits in the given pair have a tendency to diverge. When
both a-values in an interaction pair are positive, we call it a
mutualistic interaction; in this case, the traits in the given
pair have a tendency to match. Finally, when one a-value is
positive and the other is negative, we call this interaction
antagonistic; in this case, the species with the positive a-
value, the predator (or parasite), tries to match the species
with the negative a-value, the prey (host), which in turn tries
to escape.

We take two different approaches to modeling this general
setup. In the first, which we term the ‘‘fixed genetic variance’’
model, we make several assumptions that make the model
analytically tractable. Specifically, we assume that additive
genetic variances and covariances are constant and that phe-
notypes follow normal or multivariate normal distributions.
These assumptions imply that selection must be relatively
weak. In the second approach, which we term the ‘‘explicit
multilocus’’ model, we use numerical simulations to analyze
an individual-based and genetically explicit model incorpo-
rating the fitness assumptions (1a–c). In this model, trait val-
ues can only vary within a finite trait interval, and genetic
variances and covariances can evolve. As a consequence, the
individual-based model can generate types of evolutionary
dynamics that cannot be observed in the fixed genetic vari-
ance model. It is our hope that this two-pronged approach to
analysis brackets the range of possibilities found in natural
systems. In addition, we anticipate that this approach will
highlight differences in coevolutionary dynamics generated
by systems adhering more to one or the other set of as-
sumptions. In the sections that follow, we describe the de-
tailed assumptions and results from each of these approaches.

FIXED GENETIC VARIANCE MODEL

In this section we make several assumptions that facilitate
a mathematical analysis of the model. Specifically, we as-
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sume that traits y and z are normally distributed, with fixed
additive genetic variances Gy and Gz. Similarly, the joint
distribution of x1 and x2 is assumed to be multivariate normal
with fixed additive genetic variances and and co-G Gx x1 2

variance GCov. All traits are assumed to be perfectly heritable.
For the following, we make the basic assumption that se-

lection is weak. More precisely, we assume that the fitness
functions (1a–c) are broad relative to the width of the phe-
notypic distributions, and that the differences between mean
phenotypes of the interacting species are small. Under these
assumptions, we can approximate the exponential expression
in the fitness functions by a quadratic term of the form 1 2
a(m 2 v)2, where a stands for the various interaction coef-
ficients, and (m, v) stand for the possible interacting trait pairs.
Integrating these quadratic terms over the relevant phenotypic
distributions, f, yields expressions involving only the mean
and variance of these distributions as follows:

2W(x , x ) ø 1 2 a [(x 2 ȳ) 1 G ]1 2 xy 1 y

22 a [(x 2 z̄) 1 G ], (2a)xz 2 z

2W(y) ø 1 2 a [(x̄ 2 y) 1 G ], and (2b)yx 1 x1

2W(z) ø 1 2 a [(x̄ 2 z) 1 G ]. (2c)zx 2 x2

(Note that we have neglected fourth-order and higher terms
in eq. 2a).

Selection gradients for the various traits can be obtained
by taking partial derivatives of the logarithm of mean fitness
with respect to the trait means (Lande 1979). The mean fitness
is obtained by integrating expressions (2a–c) over the rele-
vant phenotypic distributions. Noting that

¯ ¯]lnW 1 ]W
b 5 5m ¯]m̄ W ]m̄

for any trait mean , and that 1/W̄ ø 1 because of our as-m̄
sumption of weak selection, we obtain the following equa-
tions for the change in population mean phenotypes over one
generation:

Dx̄ 5 2G a ( ȳ 2 x̄ ) 1 2G a (z̄ 2 x̄ ), (3a)1 x xy 1 Cov xz 21

Dx̄ 5 2G a (z̄ 2 x̄ ) 1 2G a ( ȳ 2 x̄ ), (3b)2 x xz 2 Cov xy 12

Dȳ 5 2G a ( ȳ 2 x̄ ), and (3c)y yx 1

Dz̄ 5 2G a (z̄ 2 x̄ ). (3d)z zx 2

Similar derivations for two coevolving species and for the
evolution of correlated traits in single species can be found
in Gavrilets (1997) and Lande (1979), respectively.

Analysis of equations (3a–d) can be simplified in two ways.
First, introducing the new variables Dxy 5 x̄1 2 ȳ and Dxz 5
x̄2 2 z̄ allows equations (3a–d) to be reduced to two equations
describing the phenotypic distance between the mean phe-
notypes of the interacting species. In addition to simplifying
the analysis, this change of variables focuses attention on the
biologically critical difference between mean trait values. It
is these differences in mean trait values that largely determine
fitness, and hence coevolutionary dynamics. Second, if the
rate of evolution is relatively slow, the difference equations
(3a–d) can be approximated by their analogous differential

equations. Because we have already assumed weak selection,
this does not require any additional assumptions. The dy-
namics of the coevolutionary system are then described by
the following differential equations:

dDxy 5 22[a G D 1 (a G 1 a G )D ] and (4a)xz Cov xz xy x yx y xy1dt

dDxz 5 22[a G D 1 (a G 1 a G )D ]. (4b)xy Cov xy xz x zx z xz2dt

In the absence of covariance between the two traits x1 and
x2 in species X (GCov 5 0), this model reduces to the case
of pairwise coevolution considered by Gavrilets (1997). This
confirms that pairwise models of coevolution can be directly
extended to multispecific coevolution whenever traits are un-
correlated and fitnesses are multiplicative (Hougeneitzman
and Rausher 1994; Rausher 1996).

Analysis of the coevolutionary model described by (4a,b)
shows that genetic covariance does not affect the equilibrium
solution. The model has a single biologically relevant equi-
librium that occurs when the phenotypic distance between
the trait means x̄1 and ȳ and x̄2 and z̄ is zero (Dxy 5 0, Dxz

5 0), irrespective of the value of GCov. Biologically, this
equilibrium corresponds to a case where interacting species
match phenotypes, resulting in maximal fitness for species
benefiting from phenotypic similarity (parasite, predator, mu-
tualist) but minimal fitness for species harmed by phenotypic
similarity (host, prey, competitor). This equilibrium is simply
the three species equivalent of that found in the model of
pairwise coevolution analyzed by Gavrilets (1997). As a con-
sequence, it seems that genetic covariance plays no role in
shaping the equilibrium outcome of coevolution between
multiple species. This result closely mirrors the classical re-
sult from single-species theory: genetic correlations generally
change the trajectory of approach to equilibrium, but not the
equilibrium value itself (Lande 1979). However, we will see
that this particular result is model dependent and does not
hold for the individual-based models introduced later.

To further explore how genetic correlations shape the co-
evolutionary dynamics of multispecific interactions, we an-
alyzed the stability of the matching equilibrium (Dxy 5 0,
Dxz 5 0). This is done following the usual procedure of gen-
erating the Jacobian matrix of partial derivatives of the right
sides of equations (4a,b) with respect to Dxy and Dxz, and
then evaluating this Jacobian matrix at the equilibrium. The
matching equilibrium is stable if both eigenvalues of the
Jacobian have negative real parts (e.g., Bulmer 1994, pp.
307–312). In contrast to the equilibrium analysis, this anal-
ysis shows that the stability of the coevolutionary system can
be altered by the genetic correlation. Specifically, stability
analysis shows that the matching equilibrium will be stable
whenever the eigenvalue

1
E 5 [2R 2 R 2 R 2 RL x x y z1 22

2 21 Ï4r R R 1 (R 2 R 1 R 2 R ) ] (5)x x x x y z1 2 1 2

has real part less than zero, where r is the genetic correlation
between traits x1 and x2, and 5 axy , 5 axz , RyR G R Gx x x x1 1 2 2

5 ayxGy, and Rz 5 azxGz. These R-values measure the speed
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FIG. 1. Schematic illustration of the effect of the genetic corre-
lation on the stability of the matching equilibrium Dxy 5 Dxz 5 0
in model (4). The panels indicate stability depending on the two
parameters c 5 1 1 Ry 1 Rz and r2 in the two casesR Rx x1 2

, 0 (A) and . 0 (B). In both cases, the matchingR R R Rx x x x1 2 1 2
equilibrium is unstable if c , 0. If c . 0 in A, the value of r2 at
which the matching equilibrium becomes unstable is given by v1
5 [( 1 1 Ry 1 Rz)2 2 ( 2 1 Ry 2 Rz)2]/(4 ) (noteR R R R R Rx x x x x x1 2 1 2 1 2
that this value may not lie in the interval [0, 1], in which case
genetic correlation cannot affect the stability of the matching equi-
librium). In addition, if r2 is increased above v2 5 [2( 2R Rx x1 2
1 Ry 2 Rz)2]/(4 ) . v1 the analytical model exhibits oscillatoryR Rx x1 2
dynamics (independent of whether the matching equilibrium is sta-
ble). If c . 0 in B, the value of r2 at which the matching equilibrium
becomes stable is again given by v1. The fact that stability only
depends on r2 implies that stability does not depend on the sign of
the genetic correlation in model (4).

of evolutionary change, with positive R-values indicating se-
lection for matching (i.e., mutualism, parasite) and negative
R-values indicating selection for mismatching (i.e., compe-
tition, host). Whenever the real part of the eigenvalue (5) is
positive, the matching equilibrium is unstable, and hence the
phenotypic distance between trait means in at least one of
the trait pairs increases without bound; for predator-prey in-
teractions, this would indicate that the prey species is winning
the coevolutionary race.

Insight into the factors determining the coevolutionary sta-
bility of three species systems can be gained by further ex-
amining expression (5), yielding four general results. First,
since the genetic correlation, r, appears only as a square,
both positive and negative correlations have identical effects
on the stability properties of the matching equilibrium. Sec-
ond, for the genetic correlation between traits x1 and x2 to
affect stability, the following conditions must hold:

R 1 R 1 R 1 R . 0 and (6a)x x y z1 2

Ï(R 1 R )(R 1 R )x y x z1 2
# 1 . (6b)) )ÏR ÏRx x1 2

Condition (6a) is needed to ensure that expression (5) can in
principle be negative, and condition (6b) is needed to ensure
that the left side of (5) changes sign as r2 is varied between
zero and one. Third, if conditions (6a,b) are satisfied and the
genetic correlation, r, affects stability, the effect will be to
increase stability if , 0 but to decrease stability ifR Rx x1 2

. 0. Thus, the qualitative effect of increasing r2 onR Rx x1 2

the stability of the matching equilibrium depends on whether
selection has the same direction (either for matching or for
mismatching) in the two traits of the multivariate species.
Fourth, if , 0, then increasing the genetic correlationR Rx x1 2

between traits x1 and x2 can cause the matching equilibrium
to be a focus (as the square root in expression 5 becomes
imaginary), so that away from the equilibrium the system
will exhibit coevolutionary cycles (of either decreasing or
increasing magnitude, depending on whether the focus is sta-
ble). Note that cyclic dynamics are not possible in an identical
two species model (Gavrilets 1997). The results from the
stability analysis of model (4a,b) are summarized schemat-
ically in Figure 1.

Using the results summarized in the preceding paragraph,
it is possible to categorize various ecological interactions
according to the influence of genetic correlation on the co-
evolutionary outcome. These results are summarized in Fig-
ure 2 and reveal a general conclusion: when interactions are
either all mutualistic or all competitive, genetic correlations
in the focal species have no qualitative effect on the coevo-
lutionary dynamics. Irrespective of genetic correlations these
interactions eventually coevolve to the state that is predicted
by coevolution in the component interactions. Thus, in three-
way mutualisms, both trait pairs will always match up, and
in three-way competitive interactions both trait pairs will
always maximally mismatch, irrespective of the amount of
genetic correlation between traits in the focal species. This
result is similar to the finding for the single-species models
of Lande (1979), in which the evolutionary equilibrium does

not depend on the amount of genetic correlation between the
evolving traits.

However, due to the dynamic nature of coevolution, the
ultimate outcome of other three-way interactions may be pro-
foundly altered by correlations between the two traits in the
focal species. Because the number of ecological interactions
contained in Figure 2 is so large, an exhaustive summary of
each type of interaction is impractical. Instead, we present a
few salient examples from the subset of interactions offering
the richest spectrum of biologically important results.
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FIG. 2. A summary of the effect of genetic correlations between traits in the focal species on the stability of the matching equilibrium
in the deterministic model. Genetic correlations alter the stability of the matching equilibrium if conditions (6) of the text are satisfied.
If , 0 genetic correlations increase stability, whereas if . 0, genetic correlations decrease stability. The three species areR R R Rx x x x1 2 1 2
represented by circles, with the focal species in the center. Arrows connecting species labeled with a plus sign indicate that the species
toward which the arrow points benefits from having matching trait values. Arrows labeled with a minus sign indicate that the species
toward which the arrow points is harmed by matching trait values.

Case 1: mutualism-antagonism

We first consider the two interactions that couple parasit-
ism and mutualism (Fig. 2B,C). Take as the first example the
case where the focal species X acts as an antagonist to species
Z, but as a mutualist with species Y. Biologically, this case
would correspond to an insect that pollinates species Y but
simply robs nectar from species Z. In the absence of genetic
correlation between traits x1 and x2, species Y and X would
coevolve matching phenotypes and be maximally coadapted
(Dxy 5 0). In contrast, the outcome of the interaction between
X and Z is not so clear cut. If 2Rz . , species Z wins theRx2

coevolutionary race and escapes from parasitism by X. But
if 2Rz , , species X wins the coevolutionary race andRx2

evolves to maximally parasitize Z. Thus, the species with the
more rapid response to selection will win the coevolutionary
race (Gavrilets 1997).

If a genetic correlation exists between traits x1 and x2,
however, species X is faced with a trade-off: either pursue
matching with species Y or matching with species Z. Stability
condition (5) shows that the greater the genetic correlation,
either positive or negative, the more likely it is that the match-
ing equilibrium is unstable. This could correspond to two

different biological scenarios. In one case, the mutualism
between X and Y could dissolve as phenotypic matching
between these species is disrupted by species X tracking the
rapidly changing phenotype of its host species Y. In the other
case, species Z could escape parasitism by species X as cor-
related selection for matching the mutualist species Y pre-
vents species X from successfully tracking the phenotype of
its host. Either way, species X is effectively forced into spe-
cializing as a parasite of species Z or as a mutualist of species
Y. If the traits in species X are only weakly correlated, how-
ever, species X could remain a generalist and capitalize on
resources provided by both species Y and Z.

Now consider the similar case where multivariate species
X acts as a mutualist of species Y, but instead of parasitizing
species Z, species X is now parasitized by Z. This is much
like the interactions between Lithophragma parviflorum and
its associated floral pollinators and parasites (Thompson and
Pellmyr 1992). In contrast to the previous case, stability con-
dition (5) shows that increasing genetic correlations now in-
crease the stability of the matching equilibrium. Once again
the reason is that genetic correlation poses a trade-off for
species X: either escape from parasite Z or capitalize on
interactions with mutualist Y.
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Case 2: antagonism-antagonism

The second class of interactions we consider in detail oc-
curs when two host parasite interactions are coupled (Fig.
2E,F). We first consider a scenario where the focal species
X parasitizes or preys upon both species Y and Z. Under this
ecological scenario condition (5) shows that increasing the
magnitude of the genetic correlation between traits x1 and x2
destabilizes the matching equilibrium. Once again the reason
is that species X is confronted by the familiar trade-off: either
pursue species Y or species Z. For sufficiently large genetic
correlations, either species Y or Z escapes evolutionarily and
X is forced into specializing on a single prey or host.

The second scenario we consider occurs when the focal
species X is parasitized or preyed upon by both species Y
and Z. Once again, condition (5) shows that an increasing
magnitude of genetic correlation destabilizes the matching
equilibrium. In this case, however, the reason has nothing to
do with a trade-off. Instead, the counterintuitive result is that
both positive and negative genetic correlations facilitate the
evolutionary escape of species X from species Y and Z by
effectively magnifying the strength of selection on species
X. Instead of leading to a trade-off, the genetic correlation
actually magnifies the strength of selection on species X, and
hence the incentive for species X to escape. This prevents
both species Y and Z from evolving to be effective parasites
or predators, hence the counterintuitive result that both pos-
itive and negative genetic correlations facilitate the evolu-
tionary escape of species X from species Y and Z.

Case 3: competition-antagonism

The final scenario that we consider in detail occurs when
the focal species X is a competitor in one interaction and a
predator in the other (Figure 2I). In this case, condition (5)
predicts that increasing the genetic correlation between traits
in the focal species should increase the stability of the match-
ing equilibrium of the whole system if the antagonistic in-
teraction has a stable equilibrium in isolation (i.e., if the
predator can evolve faster than the prey). Biologically, this
means that those traits mediating the competitive interaction
can, under some conditions, be prevented from diverging by
the genetic correlation between traits. The consequence is
that substantial levels of maladaptation are maintained as
both species are forced to compete intensely in perpetuity.
This is again a counterintuitive result, for one would expect
that the competitive traits should always be able to diverge,
irrespective of the correlation to the antagonistic trait pair.
After all, for the matching antagonistic pair it does not matter
where in the trait interval the traits match up. As a conse-
quence, the predator trait should be able to both match the
prey trait and diverge from the competitor simultaneously.
Nevertheless, the analytical result that strong antagonistic
interactions can induce matching in the competitive traits
holds true. We will provide an intuitive explanation for this
result in the next section, in which we use individual-based
multilocus models to investigate coevolutionary dynamics in
more detail.

EXPLICIT MULTILOCUS MODEL

Because we are not only interested in the local stability
properties of matching equilibria and in how correlation

might affect such properties, but more generally in the un-
folding of the whole coevolutionary dynamics away from
equilibrium, we now turn to genetically explicit individual-
based simulations. These simulations make assumptions that
are generally compatible with those of the analytical model.
For instance, we assume free recombination, additive poly-
genic traits, random mating, fixed population sizes, and co-
evolutionary selection governed by equations (1a–c). How-
ever, these simulations differ in that they explicitly allow
genetic variances and covariances to evolve, as would be the
case under strong selection. Because selection may be par-
ticularly strong in species interactions (e.g., Thompson 1998,
1999), this represents an important perspective.

Genetic correlations are incorporated into the simulations
by assuming that a subset of the loci in the focal species X
act in a pleiotropic fashion (Fig. 3). As a consequence, genetic
correlations between traits can be maintained in the absence
of disequilibria. Because the fitness of the focal species X is
determined multiplicatively, the degree of pleiotropy between
traits largely determines the genetic correlation. This allows
us to couch the results of what follows in terms of the genetic
correlation rather than in the more strictly accurate terms of
pleiotropy. We feel that this use of shorthand is justified in
this case because it greatly facilitates comparison with results
from the analytical model.

We assume that the phenotypes of the two single-trait spe-
cies Y and Z are determined by the additive action of ny and
nz diploid diallelic loci, respectively. In contrast, the phe-
notypes of the traits x1 and x2 in the focal species X are
determined by the additive action of three sets of diallelic
diploid loci. Specifically, the value of trait x1 is determined
by x1-loci that affect only trait x1 in addition to np pleio-nx1

tropic loci that effect both x1 and x2. The value of trait x2
depends upon x2-loci unique to that trait as well as thenx2

np pleiotropic loci. With positive pleiotropy the np shared
loci increase the phenotypic value of both trait x1 and x2,
creating a positive genetic correlation between these traits.
With negative pleiotropy, the np shared loci increase the phe-
notypic value of trait x1 but decrease the value of x2, creating
a negative genetic correlation between these traits. For the
simulation results reported below the number of loci affecting
each of the four traits was set to 10. For the multivariate
species, this means that np 1 5 np 1 5 10 in alln nx x1 2

simulations. To quantify the amount of pleiotropy, we define
a pleiotropy index P 5 6np/(np 1 ) 5 6np/(np 1 ), withn nx x1 2

the sign depending on whether alleles at the shared loci have
the same or opposite effects on the two traits. For example,
P 5 20.5 means that np 5 5, and that alleles at the shared
loci have opposite effects on the two traits. Highly positive
or negative pleiotropy indices generally cause strong positive
or negative genetic correlations between the two traits in the
multivariate species. A more detailed description of the ge-
netic architecture of the three interacting species and addi-
tional simulation details are explained in Figure 3.

To facilitate comparison of the evolutionary dynamics of
the various traits and to level the playing field for the inter-
acting species, the phenotypic values of all traits were scaled
to lie within the interval [0, 1]. This prevents the interacting
species with the greatest number of loci from winning the
coevolutionary race simply by having a greater range of pos-
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FIG. 3. Model description. The figure is a schematic representation
of the genetic architecture in the multivariate species. The genetic
architecture in the single-trait species is analogous to that for a
single trait in the multivariate species. Further model specifications
are as follows. Population size is finite and constant and was set
to 1000 in all simulation results reported below. The population is
initialized with individuals whose alleles are chosen uniformly ran-
domly (so that the mean phenotypes are close to 0.5 for all traits).
In each generation, the relative fitness of each individual is cal-
culated according to the fitness functions (1a–c), with the integrals
replaced by appropriate sums over all individuals in a population.
Pairs of individuals are then drawn within each species with prob-
abilities according to the relative fitnesses of individuals. Each mat-
ing pair produces one diploid offspring individual using Mendelian
segregation and free recombination between all loci. In addition,
we assume that reversible mutations occur in the offspring at a rate
of 1024 per locus and generation. Choosing different values for this
mutation rate does not lead to qualitative differences from the re-
sults we report. Mating is repeated until the fixed population size
is reached, thus completing one generation.

sible phenotypes. A consequence of this scaling is that in-
creasing the number of loci controlling a specific trait de-
creases the effect of each locus, leading to a decrease in the
additive genetic variance. This effect is not specific to our
chosen scaling of [0, 1], but rather is an inevitable conse-
quence of imposing any finite trait interval.

While the ultimate goal of the individual-based model is
to investigate the full coevolutionary dynamics of three spe-
cies systems, it is worth first considering how the evolution
of genetic variance changes our expectations for a single pair
of interacting species. With only two interacting species with
a single trait in each, there are three possible cases: 1/1
(mutualism), 2/2 (competition), and 1/2 (antagonism). The

individual-based model does not yield any new insights for
the first two cases: mutualistic interactions simply coevolve
matching phenotypes generally centered in the middle of the
trait intervals (due to mutation), while competitive interac-
tions lead to the coevolution of maximally mismatched phe-
notypes [0, 1]. The antagonistic case can, however, yield
results that are fundamentally different from those obtained
with the analytical model with fixed genetic variances.

In the fixed genetic variance model the matching equilib-
rium is predicted to be stable if the predator/parasite has a
greater response to selection than the prey/host (Gavrilets
1997). In the individual-based model, however, the evolution
of additive genetic variance can often preclude the long-term
stability of this equilibrium. The mechanism behind this nov-
el phenomenon is as follows. At the matching equilibrium
the parasite/predator species experiences stabilizing selection
due to the increased fitness of individuals with phenotypes
closer to that of the majority of prey/host individuals. In
contrast, the prey/host species experiences disruptive selec-
tion. If selection on the parasite is quite strong, stabilizing
selection erodes parasite genetic variance faster than it can
be replenished by mutation. At the same time, the host ex-
periences a modest increase in its genetic variance due to
disruptive selection. The net result is a decrease in the re-
sponse to selection of the predator/parasite relative to that in
the prey/host. As a consequence, the prey can escape to one
side of the predator, which destabilizes the matching equi-
librium and initializes a coevolutionary race exhibiting per-
manent cyclic dynamics (Fig. 4). It is important to note that
this dynamical regime does not occur in the fixed variance
model of the previous section. As we will see, the possibility
of cyclic coevolutionary dynamics can have important con-
sequences for the multivariate case, which we consider next.

Just as the analytical model, the individual-based model
can be used to study all the cases in Figure 2. However, we
will again restrict ourselves to a subset of salient examples.
To develop results parallel to the previous section, we con-
sider the same subset of three-way interactions detailed for
the model with fixed genetic variance. The results of simu-
lations show that the effect of covariance is often in accor-
dance with what is predicted by the analytical model for the
stability of matching equilibria. Even in these cases, though,
the simulations enrich our understanding of the coevolution-
ary process by revealing novel dynamics and outcomes. In
particular, the individual-based model can have stable evo-
lutionary equilibria that are different from the matching equi-
librium, leading to permanent maladaptation.

Case 1: mutualism-antagonism

In this case, the prediction made by the analytical model
for the effect of increasing the genetic correlation between
traits depends on whether the multivariate species is the prey
or the predator in the antagonistic interaction. If the multi-
variate species is the prey, then increasing the covariance
should stabilize the matching equilibrium. This is indeed gen-
erally the case in the individual-based model, as is illustrated
in Figure 5. Figure 5A shows the dynamics in the presence
of a low level of pleiotropy between the traits affecting the
mutualistic and antagonistic interactions. The mutualistic in-
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FIG. 4. Cyclic arms race generated by a predator-prey interaction
in the multilocus model. Mean trait values of the prey (black dots,
A) and predator (gray dots, A) match near the boundaries of the
trait interval, where the predator can catch up with the prey. Escape
of the prey from the matching state is precipitated by a drop in the
genetic variance in the predator (gray dots, B) and leads to a phase
of directional selection in both prey and predator, during which
genetic variances increase. Directional phases and quasi-stable
matching alternate, leading to cyclic coevolutionary dynamics. axy
5 21.5, ayx 5 1.9.

teraction stabilizes at the matching equilibrium, while the
antagonistic interaction leads to a cyclic arms race (due to
evolving genetic variances, see above). However, the genetic
correlation already induces lower amplitudes in the arms race
cycles. Figure 5B shows that an increase in the level of plei-
otropy can lead to stabilization of the matching equilibrium
for both interactions if the mutualistic interaction is stronger
than the antagonistic interaction (i.e., if the interaction co-
efficients a in expressions 1a–c are larger in magnitude for
the mutualistic interaction), as we assumed in Figure 5. This
is because via the genetic correlation generated by pleiotropy,
the mutualistic trait in the multivariate species keeps the prey
trait in check so that the latter can no longer escape from the
predator. Such stabilization is prevented if the antagonistic
interaction becomes too strong.

Again in accordance with the analytical prediction, the
matching equilibrium is not stabilized by increased covari-
ance when the multivariate species is the predator. However,
if the mutualistic interaction is strong enough, a new type of
dynamics is seen in the individual-based model: coevolution
stabilizes at an equilibrium that is different from the matching
equilibrium (Fig. 5). Figure 5C again shows the dynamics
with only a weak genetic correlation, which is essentially the
same as in Figure 5A. In Figure 5D, the dynamics stabilize
at an equilibrium at which the prey species has permanently

escaped the multivariate predator. Thus, in this case the ge-
netic correlation between the mutualistic and the predator
traits can again prevent the cyclic arms race, but at a per-
manent cost to the predator. Note that the dynamics shown
in Figure 5D are quite different from those shown in Figure
5B, despite the fact that both cases depend on the effect of
covariance between a mutualistic and an antagonistic trait
pair. The difference is that in one case the genetic correlation
acts on the prey trait and in the other on the predator trait.

Case 2: antagonism-antagonism

We first consider the case in which the multivariate species
preys upon both single-trait species (Fig. 2E). As is expected
from the results for a single antagonistic trait pair (Fig. 4),
the coevolutionary dynamics results in two cyclic arms races
if there is a low level of pleiotropy between the two predator
traits (Fig. 6A). The prediction from the analytical model is
that increasing the covariance between these traits should
decrease the stability of the matching equilibrium. In the
present situation, however, this is an irrelevant result because
the evolution of genetic variance renders matching unstable
even in the absence of genetic correlation. Figure 6B shows
an example of coevolution with a high negative correlation:
the system is very far from matching and instead stabilizes
at an equilibrium at which both prey species have escaped
their predator. The two predator traits are held in the middle
of the trait interval by the genetic correlation, which allows
the prey to escape and causes a substantial degree of mal-
adaptation in the predator. This result is in good qualitative
agreement with the prediction of the analytical model that
increasing genetic correlations favor the escape of the prey
species. What we see again, however, is that the evolution
of genetic variances and covariance leads to the existence of
a novel equilibrium state not possible with fixed genetic var-
iances and covariances. We note that a stable equilibrium
representing permanent maladaptation in the predator also
emerges with large positive correlations, in agreement with
the prediction from the deterministic model of the previous
section that the sign of the correlation should not matter for
the qualitative features of the coevolutionary dynamics.

A very different picture emerges when the multivariate
species is the prey of both single-trait species (Fig. 6C,D).
In this case, the coevolutionary dynamics never stabilize and
instead remain cyclic, independent of the amount of genetic
correlation (Fig. 6D). Thus, even though the analytical pre-
diction for the effect of increased covariance is the same a
before, the actual dynamics play out very differently in the
two cases. We note that the dynamics of the case in which
the multivariate species is both predator and prey are very
similar to the case just shown in Figures 6C,D, even though
in this case the analytical prediction is that increased co-
variance should have a stabilizing effect.

Case 3: competition-antagonism

We now give an example of how genetic correlations can
induce maladaptation in competitive interactions. We con-
sider a case where the focal species is a competitor in one
interaction and a predator in the other interaction, and we
assume that the antagonistic interaction is much stronger than
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FIG. 5. Effects of genetic correlation in a multivariate species involved in a mutualistic and a predator-prey interaction. (A) The multivariate
species is the prey in the antagonistic interaction, with a low correlation between the prey trait and the trait determining the mutualistic
interaction (pleiotropy index P 5 0.1). The mutualistic interaction (black dots: multivariate species; gray dots: single-trait mutualist) leads
to a stable matching equilibrium, while the antagonistic interaction (black squares: multivariate prey species; gray squares: single-trait
predator) exhibits cyclic dynamics. Note that the correlation induces damped oscillations in the cyclic arms race. (B) The genetic correlation
is high (pleiotropy index P 5 0.9) and the mutualistic interaction induces a stable matching equilibrium for all traits. (C) The same as panel
A, but now the multivariate species is the predator (black squares). Again, for low correlation (pleiotropy index P 5 0.1) there is cycling
in the antagonistic interaction and stable matching in the mutualistic interaction. (D) A strong correlation exists (pleiotropy index P 5 0.9)
and the coevolutionary dynamics stabilize at an equilibrium at which the prey is permanently displaced from the predator. 5 1.5,ax y1

5 1.7, 5 20.4, 5 0.5 in A and B; 5 1.5, 5 1.7, 5 0.4, 5 20.5 in C and D.a a a a a a ayx x z zx x y yx x z zx1 2 2 1 1 2 2

the competitive interaction (Fig. 2I). If the correlation be-
tween the antagonistic trait and the competitive trait in the
focal species is low, the antagonistic trait pair exhibits cycles,
while the competitive trait pair diverges, as expected (Fig.
7A). However, if this correlation is high, the coevolutionary
cycles in the antagonistic trait can drag the competitive trait
along in such a way that the two competitors, rather than
diverging to a permanent mismatch, undergo repeated tem-
porary convergence (Fig. 7B). Thus, with a large genetic

correlation the cyclic arms race between predator and prey
can lead to repeated crossings of the competitive traits, rep-
resenting periods of maladaptation. It is worth noting that
this is the effect that can lead to stabilization of the matching
equilibrium in the analytical model, as described at the end
of the previous section. If the antagonistic interaction has a
stable matching equilibrium in the analytical model, then the
analytical model exhibits decreasing cycles toward this
matching equilibrium. If the antagonistic interaction is strong
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FIG. 6. Effects of genetic correlation in a multivariate species involved in two predator-prey interactions. (A) The multivariate species
is the predator in both interactions (and hence feeds on two distinct prey species). With a low genetic correlation between the predator
traits (pleiotropy index P 5 0.1), both trait pairs exhibit cyclic dynamics (black squares and dots: multivariate species; gray squares and
dots: corresponding prey species). (B) There is a large negative genetic correlation (pleiotropy index P 5 20.9) that induces a new
stable equilibrium at which both prey species have permanently escaped their predator. (C) The same as panel A, but now the multivariate
species is the prey in both interactions (and hence is eaten by two different predators). With a low correlation (pleiotropy index P 50.1),
both trait pairs again exhibit cyclic dynamics. (D) A large negative correlation exists (pleiotropy index P 5 20.9) and the dynamics
remain essentially unchanged. 5 1.0, 5 21.1, 5 1.2, 5 20.9 in A and B; 5 21.0, 5 1.1, 5 21.2,a a a a a a a ax y yx x z zx x y yx x z zx1 1 2 2 1 1 2 2
5 0.9 in C and D.

enough, these cycles induce the repeated crossing over of
competitive traits described above, thus effectively trapping
the competitive traits at the matching equilibrium, hence the
analytical prediction that a high covariance can stabilize the
matching equilibrium for the whole system.

DISCUSSION

Our analyses suggest that genetic correlations can play an
important role in shaping the coevolutionary dynamics of
three-species systems. In cases of weak selection, where ge-

netic variances and covariances may remain approximately
constant, our analytical results show that genetic correlations
can change the stability of coevolutionary equilibrium points,
thus determining the outcome of coevolution. In cases of
strong selection, where the genetic variances and covariances
themselves evolve, results from simulations reveal that cor-
relations can lead to novel equilibria and dynamic regimes.
This is true, in particular, if at least one of the coevolving
trait pairs is involved in an antagonistic interaction. In this
case, genetic correlations can, for example, generate trade-
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FIG. 7. Correlation between antagonistic and competitive traits can
lead to maladaptive convergence of competitive trait pairs. The
multivariate species is both a predator (black dots; gray dots rep-
resents the corresponding prey) and a competitor (black squares;
gray squares is the corresponding competitor). With low genetic
correlations (A, pleiotropy index P 5 0.1) the competitive traits
are expected to diverge. However, with a high correlation (B, plei-
otropy index P 5 0.8) the cycles in the predator trait (black dots)
caused by the coevolutionary arms race drag along the competitive
trait (black squares), leading to repeated crossings of the competitor
traits. 5 2.2, 5 20.05, 5 22.1, 5 20.04.a a a ax y yx x z zx1 1 2 2

offs that lead to cyclically recurring or permanent malad-
aptation in one of the coevolving species (see Figs. 5–7).

The importance of genetic correlations for the dynamics
of three-species systems is not universal, however. Our an-
alytical results allow us to categorize which interactions un-
dergo qualitative changes in coevolutionary dynamics in re-
sponse to changing strengths of genetic correlation. These

results are summarized in Figure 2 and generate two broad
predictions. First, systems where a joint fitness maximum
exists for all three species, such as three-way mutualistic or
competitive interactions, reach the same equilibrium irre-
spective of genetic correlation. Second, whether correlations
act to stabilize or destabilize the matching equilibrium is
determined by the fitness effects of the interactions on the
multivariate species. If the multivariate species is harmed or
benefited by matching in both its interactions with the other
two species, genetic correlations favor coevolutionary insta-
bility. In contrast, if the multivariate species benefits from
matching in one of the interactions while being harmed by
matching in the other, genetic correlations favor coevolu-
tionary stability. These results are corroborated by the in-
dividual-based simulations. We have never seen cases in
which increasing the genetic correlation resulted in more sta-
bility for the matching equilibrium in the individual-based
model when a decrease in stability was predicted by the an-
alytical model and vice versa.

These predictions have interesting biological implications
for several specific three-way interactions. One of the most
interesting is the role that genetic correlations may play in
driving the evolution of specialization. For example, consider
the interactions between a multivariate parasite and two host
species. Here our prediction is that increasing genetic cor-
relations should destabilize the matching equilibrium. As a
consequence, increasing the genetic correlation between the
parasite traits causes the parasite to become increasingly mal-
adapted to both host species (Fig. 6B). As a consequence,
given some sufficient level of genetic correlation, it becomes
advantageous for the parasite to abandon attempts to use both
host species and instead specialize on a single host. This
suggests a readily testable prediction: generalist parasites
should be characterized by a low genetic correlation between
traits mediating interactions with different host species. A
similar phenomenon occurs when the multivariate species
interacts as a mutualist with one species, but as a parasite of
the other. In this case, increasing the genetic correlation be-
tween traits tends to destabilize the matching equilibrium
favoring the evolutionary escape of the prey or host species,
effectively forcing the multivariate species into specializing
as a mutualist rather than as a parasite (Fig. 5D).

Another interesting and counterintuitive result to emerge
from our model is that positive and negative correlations
should have similar effects. This is apparent in the stability
analysis of the deterministic model and is supported by our
extensive simulations of the individual-based model, in
which we have never seen a qualitative difference in the
coevolutionary dynamics for positive and negative genetic
correlations. While it has often been assumed that negative
genetic correlations should be of primary importance because
they lead to trade-offs (e.g., Hougeneitzman and Rausher
1994; Rausher 1996), our results show that positive corre-
lations may be equally important. This result, however, is
likely to depend on the mode of coevolution considered. Here
we have considered a model of coevolutionary matching;
models based on coevolutionary escalation often yield dif-
ferent results (e.g., Abrams and Matsuda 1997; Abrams
2000). This can be clearly seen by considering the case of a
parasite that uses two host species. In our model of coevo-
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lutionary matching, the parasite must match phenotypes with
both host species. Hence, a positive genetic correlation may
generate a trade-off in our model if, for instance, one host
evolves a small phenotype while the other evolves a large
phenotype. In a model of coevolutionary escalation, however,
a large phenotype is always better, and negative genetic cor-
relations are much more likely to generate a trade-off (e.g.,
Berenbaum et al. 1986; Bergelson et al. 2001)

To this point we have focused on the results that emerge
from both the fixed genetic variance and explicit multilocus
models. Not surprisingly, however, these models generate
quite different results and predictions in some respects. Of
primary importance is the qualitative difference in behavior
observed when one of the interactions is antagonistic. While
such interactions can be stable with fixed genetic variance
(e.g., Gavrilets 1997), when the genetic variance evolves this
may not be the case. Instead, coevolutionary cycles can
emerge as parasite genetic variance is eroded by stabilizing
selection (Fig. 4). A consequence of this discrepancy is that
under a broad range of conditions three-way interactions con-
taining an antagonistic component are predicted to behave
quite differently by the two modeling frameworks. In par-
ticular, explicit multilocus genetics with fixed trait intervals
generates more interesting dynamics than the simple analyt-
ical model, in which traits are often predicted to evolve to
infinity. For example, the individual-based model can pro-
duce sustained and bounded oscillations. Perhaps more in-
terestingly, however, high genetic correlations in the indi-
vidual-based model can induce novel stable equilibrium
states that are different from the matching equilibria found
as the sole equilibrium states in the analytical model.

Rather than simply concluding that one of the models is
wrong in these cases, it is worthwhile to consider the con-
ditions under which the predictions of each model might be
most profitably applied. For interactions characterized by
weak selection, for instance, the fixed genetic variance model
may offer accurate predictions. This view is largely supported
by the maintenance of substantial and relatively constant lev-
els of genetic variance in some long-term artificial selection
experiments (e.g., Falconer and Mackay 1996). From a more
practical perspective, the fixed genetic variance model has
the added benefit of relying on parameters that can be mea-
sured in natural populations (e.g., Berenbaum et al. 1986;
Berenbaum and Zangerl 1992). In contrast, the parameters
required by the explicit multilocus model (e.g., the number
of loci, effects of loci, degree of pleiotropy) are not currently
available for most well-studied systems. Despite this practical
limitation, the explicit multilocus model is likely to provide
better predictions when the genetic variances or covariances
of the interacting species themselves evolve. This may be
particularly likely in interactions characterized by strong se-
lection. It is encouraging, though, that for the wide spectrum
of interesting biological scenarios we have considered, both
approaches lead to qualitatively similar results and predic-
tions.

In this light, it is worth considering the potential conse-
quences of the assumptions shared by both models. Three
assumptions in particular stand out as potentially important.
First, we do not incorporate any form of stabilizing selection
on the traits mediating the interactions. As pointed out by

Gavrilets (1997), this lack of stabilizing selection can gen-
erate biologically unreasonable results in the analytical
framework by allowing trait values to become infinite. How-
ever, in our explicit multilocus models, trait values are con-
strained to be finite, so that stabilizing selection is not nec-
essary to prevent infinite trait values or to generate coevo-
lutionary cycles. Second, we have assumed that the fitness
of the multivariate species is determined by the multiplicative
action of its interactions with the other two species. While
for some interactions this appears to be the case (Houge-
neitzman and Rausher 1994), there are clearly others where
the fitness consequences of interacting with multiple other
species are not independent (Agrawal 2000; Stinchcombe and
Rausher 2001; Hufbauer and Root 2002). Third, we have
assumed a very specific functional form between the phe-
notypes of the interacting species and fitness. We have as-
sumed that fitness depends on the squared phenotypic dis-
tance. This is a reasonable assumption for many interactions,
including those between mutualists, competitors, and pred-
ators and their prey (e.g., Steiner and Whitehead 1991; Benk-
man 1999; Schluter 2003). In other systems, however, the
functional form of the relationship between fitness and the
phenotypes of the interacting species may be quite different
(e.g., Brodie and Brodie 1999; Bergelson et al. 2001). This
can have important consequences for coevolutionary dynam-
ics (e.g., Abrams 2000). Exploring these consequences is an
important focus for future work.

We have analyzed a very simple model of coevolution
between three interacting species. Our goal was not to com-
pletely describe or document the detailed dynamics of any
particular interaction, but rather to provide a broad survey
of the impact of genetic correlations on various three-species
interactions. In light of this, we view this work as a roadmap
to future research rather than as an endpoint in and of itself.
Despite this simplicity, however, our model has demonstrated
that genetic correlations can play a critical role in shaping
the coevolutionary dynamics of three-species interactions. It
is our hope that these results will stimulate further theoretical
and empirical work on the coevolutionary dynamics of mul-
tispecies interactions.
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