Regular Expressions

Def: A language (i.e., a set of strings) is regular if it is possible to construct a DFA that accepts the language (and rejects everything not in the language).

Note: 1) We can prove a language is regular by constructing a DFA (or NFA) for it.

2) We don't yet (in the class) know ways to prove a language is not regular— an example of such a language is

$$\{a^n b^n | n \geq 0\} = \{\lambda, ab, aabb, aaabbb, aaaaabbbb, \ldots\}$$
A regular expression is a way of describing a regular language by a single string.

Today and Friday:

1) Tell you what a regular expression is, and what language a reg. expr. stands for.
2) How we can construct a NFA that accepts the lang. described by a reg. exp.
3) How we can construct a reg. exp. given an NFA.
A regular expression on an alphabet \(\Sigma \) is a string on \(\Sigma \cup \{\emptyset, +, (,), \ast \} \) that can be formed using the following rules.

1) a) Any character in \(\Sigma \) is a reg. expr.
 b) \(\lambda \) is a reg. expr.
 c) \(\emptyset \) is a reg. expr.

2) Given any two reg. expr. \(u, v \),
 a) \(u + v \) is a reg. expr.
 b) \((u) \) is a reg. expr.
 c) \(uv \) is a reg. expr.
 d) \(u^* \) is a reg. expr.

E.g. \(a^*(b+ab)^*a+(ba)^*a \)
 is a reg. expr.
The language described by a regular expression is as follows:

1) a) $E = \varepsilon$, $L(E) = \{ \varepsilon \}$.
 b) $E = \lambda$, $L(E) = \{ \lambda \}$.
 c) $E = \emptyset$, $L(E) = \emptyset$.

2) a) $u + v$: $L(u + v) = L(u) \cup L(v)$.
 (i.e. A string w matches $u + v$ if w matches u or w matches v)
 b) (u): $L((u)) = L(u)$
 c) uv: $L(\cdot uv) = L(u)L(v)$
 (A string w matches uv if there are strings w', w'' where $w = w'w''$, and w' matches u, w'' matches v).
d) \(u^* \ L(u^*) = L(u)^* \)

A string \(w \) matches \(u^* \) if either \(w = \lambda \), or
\[w = w_1 \cdots w_k \]
(for some \(k \)), where \(w_i \) matches \(u \) for all \(i \).

E.g. \(a^* \) means any number of \(a \)'s (i.e. \(a, aa, aaa, \ldots \) all match \(a^* \))

E.g. \((ba)^* \) means any number of \(ba \)'s (i.e. \(ba, baba, babba, \ldots \) all match \(ba^* \))

E.g. \((b+ab)^* \) is matched by
\[\lambda, b, ab, bb, bbb, bababbab \]

Strings matching
\[a^* (b+ab)^* a + (ba)^* a \]

babaqa, aaababbbbaba

Any string w \(\lambda \) no consec a's except at beginning?
Next goal: given a regular expr., build an NFA that accepts the strings matching the reg. exp. (and no others)

We do this by going through the possible methods for building a reg expr and see how to build a corresp. NFA.

1) a) \(E = l \)
 b) \(E = \lambda \)
 c) \(E = \emptyset \)

2) a) \(u + v \)
b) (u)

Machine for u

Machine for v

Connect all the final states of NFA for u to the initial state of NFA for v.

The final states of the new machine are final states in NFA for v (but final states in NFA for u are not final).
(Make a single new state, which is final, with a λ-transition to the init state of u and λ-transitions from all the final states of u)
E.g. \(a*(b+ab)^*a+(ba)^*a \) has the \(\text{NFA}\)