Various modifications to languages that make another reg lang - this gives us a way to know some language is regular that doesn't rely on directly constructing an NFA/reg exp/right-lln grammar.

1) Given a language L (on an alphabet Σ), the language $\bar{L} = \{ \text{all strings on } \Sigma \text{ not in } L \}$ is also regular.

Pf: Since L is regular, we have a DFA M that accepts L. If $M = (Q, \Sigma, \delta, q_0, F)$, then $\bar{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ accepts \bar{L}. Everything in $Q \setminus F$ not in F.
2) Given two languages \(L_1 \) and \(L_2 \),
\(L_1 \cup L_2 \) is regular.

Pf: If we have regular expressions \(e_1 \) and \(e_2 \)
for \(L_1 \) and \(L_2 \), then \(e_1 + e_2 \) is a regular
expression for \(L_1 \cup L_2 \).

3) Given languages \(L_1 \) and \(L_2 \), \(L_1 \cap L_2 \)
is regular.

Pf: Since \(L_1 \) and \(L_2 \) are regular, we have
DFA's \(M_1 = (Q_1, \Sigma, S_1, q_0^1, F_1) \)
and \(M_2 = (Q_2, \Sigma, S_2, q_0^2, F_2) \)
for them.
New machine for $L_1 \cap L_2$:

M_1

M_2

$ababaq$
Then the DFA

\[M_1 \times M_2 = (Q_1 \times Q_2, \Sigma, S, (q_0^1, q_0^2), F_1 \times F_2) \]

where

\[S((q_1, q_2), \sigma) = (S_1(q_1, \sigma), S_2(q_2, \sigma)) \]

states in "\(M_1 \times M_2 \)" look like \((q_1, q_2)\), where \(q_1 \in Q_1, q_2 \in Q_2 \), will accept precisely \(L_1 \cap L_2 \).

Def: A "homomorphism" from an alphabet \(\Sigma \) to an alphabet \(\Gamma \) is a function from \(\Sigma^* \rightarrow \Gamma^* \) given by replacing every letter in a string on \(\Sigma^* \) by a fixed string in \(\Gamma^* \).
\[\Sigma = \{ a, b, c \} \]
\[\Gamma = \{ 0, 1, 2 \} \]

\[h : \Sigma^* \rightarrow \Gamma^* \] given by
- replacing all \(a \)'s with \(01 \)'s,
- all \(b \)'s with \(12 \)'s,
- and all \(c \)'s with \(2 \)'s.

So

\[h(abcabc) = 011212 \]
\[h(baabcab) = 1201011201 \]

This \(h \) is a homomorphism.

Given a reg. lang. \(L \) and a homomorphism \(h \), then

\[h(L) = \{ h(w) \mid w \in L \} \]

is regular.

Pf: Given a reg. expr. \(e \) for \(L \),
\(h(e) \) is a reg. expr. for \(h(L) \).
Let L be a language on $\{a, b, c\}$. Consider the language on $\{b, c\}$ given by all the strings that can be obtained by deleting all the a's from a string in L. This is regular.

Pf: Take an NFA for L and replace all the a's with λ's.

Alternate **Pf:** consider a homomorphism h where we replace a's with λ's, b's with b's, c's with c's. Then this lang. is $h(L)$.
Let L be a language on $\{a, b, \lambda\}$. Consider $d(L) = \{\text{all strings obtained by deleting a single } a \text{ from a string in } L\}$. Then $d(L)$ is regular.

\textbf{Pf}: Given an NFA M for L.

\textbf{Example for thought:}
modify M by

1) Make a second copy of M, called M'.

2) For every $\delta \alpha$-transition from q_1 to q_2 in M, make a γ transition from q_1 to copy-of-q_2 in M in M'.

3) The initial state is the initial state in M; the final states are the final states in M' (but not those in M).