A question that I did not put on the exam (b/c it's impossible)

Take a language L and let $\text{repeat}(L)$ be the language consisting of strings which are some string in L repeated (exactly twice)

(If $abaaab$ is in L, $abaaababaaab$ is in $\text{repeat}(L)$.)

Tell me how, given a DFA for L, I can modify it to create a DFA for $\text{repeat}(L)$.

It turns out this is impossible.
Think about how this string is processed by the DFA.

By the time the DFA has "read" the first m a's, it has gone through $m+1$ states. Since there are only m states, it must have gone through some state twice.

Initial state + 1 state for every letter read.

So, for $w=a_1a_2a_3\ldots a_k$, the path to a final state looks like
Next 30 (?) minutes - a proof this is impossible.

In fact, it's impossible for $L = \Sigma^*$.
So $\text{repeat}(L) = \{ww \mid w \in \{a,b\}^* \}$.

set of strings that are some string repeated twice.

for the purpose of a proof by contradiction.

Assume there is a such a DFA M.

This DFA has some finite number of states m.

Consider the string $w = \underbrace{aa \ldots ab \ldots ab}_{m \quad m \quad m}$

w is in $\text{repeat}(L)$.
first \text{ in } a's

(The there could be more loops, but I'm forced to have a loop in the first \text{ in } a's)

I can repeat (or delete) the loop and still end up at a final state.

So, if we \underline{read} go through the loop twice, we will process

\[
\frac{a \ldots a}{m \text{ times}} \frac{b \ldots q}{m \text{ times}} \ldots \frac{a \ldots b}{\text{ and end at a final state}}
\]
(\(k \geq 1\) is the length of the loop)

This is NOT some string repeated twice. So \(M\) accepts a string that isn't of the form \(ww\).

Conclusion: It is impossible to build a DFA that only accepts repeat(\(\{a, b\}\)) = \(\{ww \mid w \in \{a, b\}\}\).

Another example of a (provably) non-regular language:

\[L = \{a^n b^n \mid n \geq 0\ \text{some integers}\} \]

\[\text{with} \quad a^1 b^1 a^1 b^1 \cdots \]

\[= \{\lambda, ab, aabb, aaabbb, aaaaabbbb, \cdots\} \]
Why is this not possible?

Suppose there was a DFA M for L. M has some number m of states. Whatever m is, we can construct the string $a^m b^m \in L$, so $a^m b^m$ is accepted. Somewhere in the first m letters of the path we take for $a^m b^m$, there has to be a loop. Our DFA looks like

If we repeat the loop then we have a path reading $a^{mk} b^m$ (for some k, which is the length of the loop).
and ending up at a final state. So this means M accepts $a^{m+k}b^m$, which is not in L.

So it's not possible to build M that accepts only the strings in L.

These proofs are similar, so we should be able to abstract out the principle behind them to use in other similar problems.

Pumping Lemma: Let L be a regular language. Then there exists a positive integer m so that, for every string w with $|w| \geq m$, we can break w up as $w=xyz$, where $|xy| \leq m$, $y \neq \lambda$, so that $xy^iz \in L$ for all i. Repeat y i times.
We usually use the pumping lemma to prove a language L is not regular by showing that it does not have the required property.

Revisit the first 2 proofs.

For $L = \text{repeat}(\{a,b\}^*)$,

Assume L is regular. Given m, then there exists some m, and we can choose $w = a^m b a^m b \in L$. By the pumping lemma $w = xyz$, $|xy| \leq m$, $y \neq \lambda$, with $xy^iz \in L$. But, since $|xy| \leq m$, $xy = a^d$ for some d, so $y = a^k$, $k \geq 1$.

This means $xy^2z = a^{m+k} b a^m b \notin L$, a contradiction. So L can't be regular.