Pumping Lemma for Context-Free Languages:

Goal for today: Show

\[L = \{ a^n b^n c^n \mid n \geq 1 \} \]

is not context-free

(i.e. it is not possible to make a CFG or PDA for \(L \))

Pumping Lemma for context-free languages:

Let \(L \) be a context-free language, then there exists a positive integer \(m \) so that for every string \(w \in L, \mid w \mid \geq m, \) there exist \(u, v, x, y, z, \) with \(w = uvxyz, \mid vxyl \mid \leq m, vy \neq \lambda \) (i.e. \(v \neq \lambda \) or \(y \neq \lambda \)) so that \(uv^i xy^i z \in L \) for all \(i \).
Why is this true?

If L is CF, we have a grammar for it, and our string w has a derivation in the grammar. We'll insist our grammar has no or unit for w.

Since w is long, its derivation has some var twice. (Any deriv with no vars showing up twice must be short.) Not only some var showing up twice, but twice in a path from S.

I'll insist that we don't have X in $V, X,$ or Y.

If we did, we could've picked it as our repeat.
If we have this deriv tree, we also have the deriv tree.

We can repeat as many times as we want.
Using the pumping lemma

\[L = \{ a^n b^n c^n \mid n \geq 1 \} \]

Given \(m \), let

\[w = a^m b^m c^m \in L. \]

\[\underbrace{a a \ldots a}_{m} \underbrace{b b \ldots b}_{m} \underbrace{c c \ldots c}_{m} \]

Consider ways to write \(w = uvxyz \),

\[|vxy| \leq m, \quad |vxy| \leq m. \]

What are the possibilities for \(v \) and \(y \)? Starting at left for \(vxy \):

Case 1: \(vxy = a^j \) for some \(j \), \(1 \leq j \leq m \).

So \(vy = a^k \) for some \(k \leq j \). (\(1 \leq k \))

So \(u^k x y z = a^{m-k} b^m c^m \notin L \).

Case 2: \(vxy = a^j b^k \) for some \(j, k \), \(1 \leq j + k \leq m \).

(If \(j = 0 \) or \(k = 0 \), we'll be in case 1 or 2)

If \(v \) or \(y \) has both \(a \)'s and \(b \)'s, then

\[uv^2 x y^2 z \]

will have \(a \)'s after \(b \)'s and hence \(uv^2 x y^2 z \notin L \).
Otherwise, \(v = a^p b^q \) for some \(p + q \). Then
\[
uv^2xy^2z = a^{m+p} b^{m+q} c^m \notin L
\]
since \(m+p \neq m \), or \(m+q \neq m \).
(since \(v \neq \lambda \) or \(y \neq \lambda \))

Case 3: \(vxy = b^j \) for some \(j \), \(1 \leq j \leq m \).
Then \(vy = b^k \) for some \(k \leq j \) (\(1 \leq k \)),
so \(uxz = a^m b^m k c^m \notin L \)

Case 4: \(vxy = b^j c^k \) for some \(j, k \). We can repeat the case 2 argument with \(b \)'s & \(c \)'s instead of \(a \)'s & \(b \)'s.

Case 5: \(vxy = c^k \) for some \(k \). We can repeat the case 1 or case 3 argument with \(c \)'s instead.

Hence, in all cases, we have \(uv^i x y^i z \notin L \) for some \(i \), so the pumping lemma fails and \(L \) is not context free.