Non-deterministic TMs

Goal: Define nondet-TMs and show that they are equivalent in power to standard TMs.

A non-deterministic TM is the std-TM except that the transition function S is now a transition relation; i.e., we can have

$$(q, l) \rightarrow (q_1, l_1, L \text{ or } R)$$

and

$$(q, l) \rightarrow (q_2, l_2, L \text{ or } R)$$

where $q_1 \neq q_2$ or $l_1 \neq l_2$ or one is L and other is R.

(still only finitely many possibilities)
We can't talk about the TM computing some output (b/c - which choice does it take?), but we can talk about the nondet-TM accepting or rejecting an input.

Same as before - we are biased to accepting - if any choice leads to acceptance, we accept the string. If every choice leads to rejection, we reject.

More formally, we still have the same notion of \((w, q, v) \rightarrow (w', q', v')\) (an instant descent yielding another in one step) and we accept a string \(w\) if \(a (\lambda, q_0, w) \rightarrow (_ . . .) \rightarrow (v, q_f, u)\) where \(v, u\) are in \(T^*, q_0 \notin F\).
Thm: Non-det TMs are no more powerful than standard TMs.

Pf: I need to give an method that, given a non-det \hat{M}, constructs a standard \hat{M} that accepts exactly the same strings.

Picture: A computation on a standard TM is a single path of instant deser.

This path can be infinite (which means our TM never halts).

If the path ends, and ends in a final state, we accept.
A computation on a non-det TM is a (possibly infinitely tall, but not infinitely wide tree).

If there is a leaf (node w/ no children) node in the tree which has a final state, then we accept.

So to find out if we have an except a final state somewhere, we can do a breadth-first search on this tree (Not a depth-first search b/c some branches might be infinitely long, and we don't want to just keep going down that branch).
How do we program this on a TM?

(i.e. how to make a standard-TM do a breadth-first search on this tree?)

We'll make a 3-head-3-tape TM (called \(\hat{M} \)) - we "know" how to make a standard-TM \(\hat{M} \) from \(\hat{M} \).

Tape 1: The original input - it never changes.

Tape 2: The computation going down whichever path we're in the tree we're doing currently.

Tape 3: Specification of our current tree branch:

(e.g. choice 3, then choice 6, then choice 27, then choice 4 (say, out of 50 possible))
We do the following loop:

1. Increment tape 3 (in the order $(-), (\# \text{choice 1}), (\text{choice 2}), \ldots, (\text{choice 50}), (\text{choice 1, then 1}), (\text{choice 1, then 2}), (1,3), \ldots, (1,50), (2,1), \ldots, (2,50), \ldots, (50,50), (1,1,1), \ldots$)

2. Copy tape 1 to tape 2, and run the non-determ. TM on tape 2 w/ the specified choices read from tape 3, (and move head on tape 3 to next choice symbol) - until you have run out of choice specifications on tape 3, (or you have halted b/c you're trying to do a nonexistent choice)

3. If you are in a final state, celebrate - otherwise go back to 1.
This 3-head 3-tape TM eventually accepts the string if some computation of the non-det TM accepts. If the non-det TM doesn't accept, it keeps running forever.

So our TM \tilde{M} accepts the same strings as M.