Definitions: Recursive, recursively acceptable, recursive enumerable.

Def: A language L is **recursive** (aka Turing-decidable, recursively decidable) if there is a TM M that
1) halts eventually on every input
2) accepts all strings in L
 rejects all strings not in L.

Def: A language L is recursively acceptable (aka Turing-acceptable) if there is a TM that
1) halts and accepts every string in L – does not do this to any string not in L.
Goal for today: A language L is in Turing-acceptable if and only if it is Turing-enumerable.

Easy implication: Every TE language is TA. Why?

If you have a TM M that enumerates L, we can construct a TM \(\hat{M} \) that accepts L by having \(\hat{M} \) compare its input to everything "printed" by M. If they match \(\hat{M} \) halts and accepts. If they don't match \(\hat{M} \) has M continue printing.
Def: A language L is recursively enumerable (aka Turing-enumerable) if there is a TM M that has a special state p (the "print state") so that, for every string w in L, when M is run starting from blank input, eventually $\square w \# \text{ something eventually appears on the tape while } M \text{ is in state } p$. If and only if w is in L, (i.e. you can write a computer program that prints every string in L (and nothing else))

This TM M is said to enumerate L.

Why is every TA language TE?

Given a TM \hat{M} that accepts L (i.e., accepts everything in L but might run forever on input not in L), we could try to build a TM M that enumerates L by feeding every string (say in the order $\lambda, a, b, aa, ab, bb, aaa, \ldots$) into \hat{M} one at a time, and "printing" a string when it is accepted.

This doesn't work b/c, if \hat{M} runs forever on λ, then we never get around to testing "a" so we might not ever print a even if it is in L.

Another option: cut off every computation after 1,000,000 steps, and print out only strings accepted before 1,000,000 steps.

This doesn't work b/c if a string takes 2,000,000 steps to be accepted, it's never printed.
Clever trick: Try λ for 1 minute, then λ, a for 2 minutes (each).

First 4 strings: 4

5

If the m-th string takes n minutes to accept, then we will find this out (and have \hat{M} print it) after $\max(m, n)$ minutes.

So anything that \hat{M} accepts, M will eventually print out.