Goal: Show that there is a language that is Turing-enumerable but not Turing-decidable.

Def's from 10 days ago:

Def: A language \(L \) is Turing-decidable if there is a TM \(M \) so that \(M \) halts on any input and halts in a final state if and only if the input is in \(L \).

Def: A language \(L \) is Turing-acceptable if there is a TM \(M \) so that \(M \) eventually halts in a final state if and only if the input is in \(L \) (but it might halt if the input is not in \(L \)).

Def: A language \(L \) is Turing-enumerable if there is a TM \(M \) that prints out every string in \(L \) (if \(L \) is infinite, \(M \) runs forever, but every string is printed out at some point).
10 days ago we proved that T-acceptable lang are T-enumerable and vice versa.

How do we find a language that is not TD but is TE/TA?

We will find a language L so that L is TE but \(\overline{L} \) (everything not in L) is not TE.

Then L is not TD.

Thm: If L and \(\overline{L} \) are is TD if and only if both L and \(\overline{L} \) are TA.

Pf: If L is TD, then \(\overline{L} \) is TD by switching final and non-final states.
So both are TA. (since any lang that is TD is TA).

Now suppose \(L \) and \(\overline{L} \) are both TA. This means we have TMs \(M \) and \(\overline{M} \) that accept \(L \cup \overline{L} \) — in other words, \(M \) halts in a final state for \(L \), and \(\overline{M} \) halts in a final state for \(\overline{L} \).

To build a TM \(\hat{M} \) that always halts and does so in a final state for \(L \), we have \(\hat{M} \) alternately do one step of \(M \) and one step of \(\overline{M} \), halting when either one of them halts and outputting the appropriate answer.
Finding a language \(L \) that is TA but \(E \) is not TA.

We'll think only about TMs whose input alphabet is \(\{1, 3\} \) and think of inputs as numbers in unary.

When we talked about universal TMs, we came up with a way of representing a TM as a string of 0's and 1's.

\[
(q_1, l_3) \rightarrow (q_3, l_5, R) \\
\downarrow
\]

\[
10111011101111011
\]

and separate transitions with another 0.

Once we fix a scheme for repr. TMs, we can talk about the first TM, the second TM, by their numeric order thought of as binary #s.
\[L = \{ 1^n \mid 1^n \text{ is accepted by the } n\text{-th TM} \} \]

Fill this table with N's and Y's for whether that TM accepts that input (as a unary number).

Look at diagonal:

A number is in \(L \) if that entry in the diagonal is a "Y".
L is TA - to check if $1^n \in L$,
we 1) figure out what the n-th TM is
2) running (as on universal TM) the n-th TM on the input 1^n.
3) give whatever answer the n-th TM gives (or run forever if the n-th TM runs forever on that input).

L is not TA.
Suppose for contradiction that \overline{L} is TA. Then is some TM that accepts \overline{L}.
This TM is on my list of TMs.

So this TM is the n-th TM for some n. Is the n-th TM supposed to accept 1^n or not?
If the n-th TM accepts 1^n, then $1^n \in \mathcal{L}$, so $1^n \notin \mathcal{L}$, so the n-th TM (which is supposed to accept \mathcal{L}) should reject 1^n.

If the n-th TM τ_n doesn't accept 1^n, then $1^n \notin \mathcal{L}$, so $1^n \notin \mathcal{L}$, so the n-th TM should accept 1^n.

So whichever TM we purported accepted \mathcal{L} must make a mistake at some point—when it encounters the input that corresponds to itself in the ordering of TMs.

So there is no such machine.

So \mathcal{L} is not TA, and so \mathcal{L} is not TD.