Plan for the rest of semester:

Today: Halting problem

Friday: Equivalence of languages gen by unrestricted grammars are TA and every TA lang has a unrestricted grammar.

Next week: review

Halting problem: We have a way of encoding TM, and corresponding to that, encoding the input to our TM (we discussed this for the universal TM.) We have the language

\[L = \{ \text{w} \in \{0,1\}^* \text{ where } w \text{ is an encoding of a TM } M \text{ followed by an encoding of input } I \text{ to that TM where } M \text{ halts on input } I \} \]
Thm: L is not TD.

Note: L is TA/TE - just run it is accepted by the universal Turing machine (modified to first check if we have a valid encoding, and also modified so that every halting state is an accept state).

Short but uninformative proof:

Suppose L were TD for contradiction. Then we will prove that every TA/TE language is TD. How?

If we have a TA lang. X, there is a TM M that accepts X. We construct a TM \hat{M} that decides X, \hat{M} first feeds M and w (w is our candidate for being in X) to the TM that decides L.
If this TM says \(M \) doesn't halt on \(w \),
\(\hat{M} \) should say no.
If this TM says \(M \) does halt on \(w \),
\(\hat{M} \) should run \(M \) and return
\(M \)'s answer.

No matter what, \(\hat{M} \) halts, and it always
gives the right answer.
So \(\hat{M} \) decides \(X \), so \(X \) is TD.

We know that not every TA lang is
tD, so our assumption that \(L \) is TD
must be false.
Longer, more informative proof:

Assume for contradiction that \(L \) is TD. Then there is a TM \(H \) that decides \(L \).

Method: We will construct from \(H \) a TM that has paradoxical behavior. There will be a string which it should both accept and reject (should neither reject nor accept).

0) From \(H \), construct \(H' \) that will halt only in one of two states - one final state \(q_f \) and one non-final state \(q_n \).

1) From \(H' \) construct \(H'' \) so that,
 a) When \(H' \) enters \(q_f \), \(H'' \) goes into an infinite loop. (add transitions \((q_f, \text{anything}) \rightarrow (q_f, \text{same}, R)\))
 b) The behavior on entering \(q_n \) is untouched.
\(H'' \) does the following:
- its input is a TM \(M \), followed by input to \(M \) (called \(w \)), all suitably encoded.
- if \(M \) halts on \(w \), then \(H'' \) runs forever.
- if \(M \) doesn't halt on \(w \), then \(H'' \) halts. (in \(q_n \))

2) Construct a TM \(\hat{H} \) that first copies its input, and (so if \(\hat{H} \) starts with input \(w \), \(\hat{H} \) puts \(\text{WOW} \) on the tape), and moves the head all the way back to the beginning, then runs \(H'' \).

\(\hat{H} \) is a TM. So we can encode \(\hat{H} \) as a string and feed it as input to \(\hat{H} \).
What happens?

$
\hat{A}
$
on any input should either run forever, or halt in state q_n.

Suppose \hat{A} runs forever, given the string for \hat{A} as input. Then \hat{A} actually does the following:

It duplicates the input to $\hat{A} \hat{O} \hat{A}$ (as strings) and feeds answer to H''. Since \hat{A} doesn't halt on the input \hat{A} (as a string), H'' halts in q_n.

Suppose \hat{A} halts given \hat{A} as input, then \hat{A} feeds $\hat{A} \hat{O} \hat{A}$ to H'', and runs forever.

This is nonsense, so \hat{A} can't exist, so H'' and $H' \prime$ and H can't exist.