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Flags

Fix a positive integer K and a composition µ of K . A µ-flag is a
sequence of subspaces

V• = V1 ( · · · ( V`(µ) = CK

where dim(Vj) = µ1 + · · ·+ µj . When µ = 1K , this is a complete
flag.

The flag variety Fl(CK ) is the set of all complete flags and the
partial flag variety Flµ(CK ) is the set of all µ-flags.
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Schubert cells

Fix an ordered basis f1, . . . , fK for CK , and let B be the subgroup
of matrices that are upper-triangular with respect to this basis.

Given a permutation w , we have a µ-flag V (w) where

V
(w)
j = 〈fw(1), . . . , fw(µ1+···+µj )〉. Elements u, v ∈ Sn give the same

flag iff they are in the same left coset of Sµ1 × · · · × Sµ` .

The Schubert cell Cw is the B orbit of V (w). The Schubert cells
give a cell decomposition of Flµ(CK ).
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Springer fibers

Let N be a nilpotent operator on CK of Jordan type λ. The
Springer fiber Bλ is the subvariety of the flag variety consisting of
flags V• where NVi ⊆ Vi−1 for all i .

For an appropriate choice of N, Cw ∩ Bλ is always Cd for some d ;
this gives an affine paving of Bλ.
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Cohomology of Springer fibers

Tanisaki gave a presentation for the cohomology ring of a Springer
fiber Bλ. Let λ′ be the conjugate partition to λ, with λ′j = 0 for
j > λ1 = `(λ′). Define

Iλ = 〈ed(S) | d > #S − (λ′K−#S+1 + · · ·+ λ′K )〉,

where S ⊆ {x1, . . . , xn} and ed(S) means the d-th elementary
symmetric functions in the variables in S .
Then

H∗(Bλ) = Q[x1, . . . , xn]/Iλ,

where xi = −c1(Li ) (the negative of the Chern class of the i-th
tautological line bundle).
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Cohomology example

Recall

Iλ = 〈ed(S) | d > #S − (λ′K−#S+1 + · · ·+ λ′K )〉,

For λ = , we get that Iλ is generated by all the

elementary symmetric functions in 7 variables, e3, e4, e5, e6 in 6
variables, e4, e5 in 5 variables, and e4 in 4 variables. This means

Iλ = 〈x1x2x3x4, x1x2x3x5, . . . , x4x5x6x7,

x1x2x3 + x1x2x4 + · · ·+ x4x5x6,

. . . , x1x2 + · · ·+ x6x7, x1 + · · ·+ x7〉.
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Symmetric group action on cohomology

The group Sn acts on H∗(Bλ) by permuting the variables xi . Under
this action, H2d(Bλ) ∼= V λ, the irreducible representation usually
associated to λ. Let F denote the graded Frobenius characteristic,
which assigns qdsλ to an instance of V λ in degree 2d , it turns out

F(H∗(Bλ) = H̃λ(x; q),

where H̃λ is one version of the Hall-Littlewood polynomials.

This is one of the important motivations for studying Springer
fibers and their cohomology (and known under more abstract
terms before Tanisaki).
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About the Delta Conjecture (now theorem)

The Delta Conjecture of Haglund–Remmel–Wilson (now a theorem
of D’Adderio–Mellit and Blasiak–Haiman–Morse–Pun–Seelinger)
gives a combinatorial formula for the symmetric function
∆′ek−1

en(q, t), where ∆′ is a family of operators coming from the
theory of Macdonald polynomials.

Haglund, Rhoades, and Shimozono showed that the Frobenius
characteristic of

Rn,k = Q[x1, . . . , xn]/〈xk1 , . . . , xkn , en, en−1, . . . , en−k+1〉

is ∆′ek−1
en(q, 0).
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Spanning Line Arrangements

Pawlowski and Rhodes showed that Rn,k is the cohomology ring of
the space of spanning line arrangements: the set of lines
(L1, . . . , Ln) ∈ Pk−1 such that the span of L1, . . . , Ln is all of Ck .
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Generalizing both rings simultaneously

Griffin defined the following generalization of both Rn,k and
H∗(Bλ). Let k ≤ n, λ a partition of k , and s ≥ `(λ). Define

In,λ,s = 〈ed(S) | d > #S − (λ′n−#S+1 + · · ·+ λ′n)〉,

where S⊆{x1, . . . , xn} and ed(S) means the d-th elementary
symmetric functions in the variables S . Define

Rn,λ,s = Q[x1, . . . , xn]/〈x s1 , . . . , x sn〉+ In,λ,s .

Griffin gives a basis of standard monomials and calculates the
graded Frobenius characteristic in the spirit of Garsia–Procesi. The
top degree cohomology is IndSnSkV

λ.
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Example

Recall

In,λ,s = 〈ed(S) | d > #S − (λ′n−#S+1 + · · ·+ λ′n)〉

For n = 7, λ = , s = 4, In,λ,s should have e4, e5, e6, e7 in 7

variables, e5, e6 in 6 variables, e5 in 5 variables. This means

Rn,λ,s = Q[x1, . . . , x7]/〈x4
1 , . . . , x

4
7 , x1x2x3x4x5, . . . , x3x4x5x6x7,

= x1x2x3x4 + · · ·+ x4x5x6x7〉

Alexander Woo (U. Idaho) joint work with Sean Griffin (ICERM/Davis) and Jake Levinson (SFU)

Delta-Springer varieties



Motivation Delta-Springer varieties

Special cases

For n = k = |λ|, Rn,λ,s = H∗(Bλ).

For s = k = (1k),Rn,λ,s = Rn,k .
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Main Question

Is Rn,λ,s the cohomology ring for some (compact) variety?
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The Delta-Springer varieties

Given a positive integer n, a partition λ of k for some k < n, and
some integer s ≥ `(λ), define

I Λ = (n − k + λ1, . . . , n − k + λ`, n − k, . . . , n − k) so that Λ
has s parts. (Add an s × (n − k) rectangle to the left of λ)

I K = s(n − k) + k = |Λ|
I N a nilpotent operator on CK of Jordan type Λ.

Define Yn,λ,s ⊆ Fl(1n,(s−1)(n−k))(CK ) as the set of partial flags

V• = V1 ⊆ · · · ⊆ Vn

of type (1n, (s − 1)(n − k)) such that NVj ⊆ Vj−1 for all j , AND
Nn−kCK ⊆ Vn.
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Main Theorem

We show
H∗(Yn,λ,s) = Rn,λ,s ,

with xj = −c1(Lj).
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Affine paving

Given an injective filling T of Λ by {1, . . . ,K}, we can define a
particular nilpotent operator NT . If T satisfies certain criteria,
then Cw ∩ YT is always Cd for some d . There is a combinatorial
rule for dim(Cw ∩ YT ) (including when it is nonempty).

The proof is by induction on n, and we get a recursion for the
Hilbert series of H∗(Yn,λ,s) that matches the recursion for the
Hilbert series of Rn,λ,s . The proof is a variant of those of
Shimomura, Tymoczko, and Fresse for Bλ.
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Cell example

Let n = 5, λ = (2, 1), s = 3.

Pick T =
6 4 2 1
7 5 3
9 8

This means NT =



0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


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Cell example, II

Recall T =
6 4 2 1
7 5 3
9 8

Pick w = 38152. Then

Cw ∩ YT =



a c 1 0 0
0 ab 0 d 1
1 0 0 0 0
0 0 0 0 0
0 b 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0


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The λ = ∅ case

When λ = ∅, then we can explicitly construct Yn,∅,s as a tower of
Ps−1 bundles. We know which bundles these are and can compute
directly that H∗(Yn,∅,s) = Q[x1, . . . , xn]/〈x s1 , . . . , x2

n 〉.

For any λ, we have an embedding of Yn,λ,s into Yn,∅,s . Because
the complement of the image is also paved by affines, the induced
map H∗(Yn,∅,s)→ H∗(Yn,λ,s) is a surjection.
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Spaltenstein varieties

Let N be a nilpotent operator on CK of Jordan type ν. The
Spaltenstein variety Bνµ is the subvariety of the µ-partial flag
variety consisting of µ-flags V• where NVi ⊆ Vi−1 for all i . (Note:
dim(Vi )− dim(Vi−1) = µi .)

Recall Yn,λ,s paramaterizes (1n, (n − k)(s − 1))-flags where
NVi ⊆ Vi−1 and Nn−kCK ⊆ Vn.

Hence there is a map π : BΛ
(1n,(s−1)n−k )

→ Yn,λ,s (by forgetting the

last n − k parts of the partial flag).
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Cohomology information from Spaltenstein

We show that, given further restrictions on T , over each “cell” of
the Delta-Springer variety, the map π is projection from a product
(with an appropriate smaller Spaltenstein variety).

This shows the Spaltenstein variety has an affine paving
compatible with π and the affine paving of the Delta-Springer
fiber, which shows the induced map
π∗ : H∗(Yn,λ,s)→ H∗(BΛ

1n,(s−1)n−k )
) is injective.

Brundan and Ostrik have computed the cohomology of the
Spaltenstein variety, and the remaining relations generating In,λ,s
are among the relations for H∗(BΛ

1n,(s−1)n−k )
).
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What I haven’t told you

I Explicit description of the irreducible components. There are
dim(IndSnSkV

λ) many of them, each of dimension
n(λ) + (s − 1)(n − k).

I The ind-variety as s →∞.
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Questions

I RSK means what? (Steinberg analogue)

I Equivariant cohomology? (Kumar-Procesi and
Goresky-Macpherson analogue)

I Hessenberg analogues?

I Other (classical) types?
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Thank you

Thank you for your attention!
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