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Sorting permutations

Sorting by transpositions

One can imagine various “machines” that can sort permutations
(to the identity) by swapping pairs of entries.

Machine ¢: Can only swap adjacent entries, and every move
costs 1.

Machine a: Can swap arbitrary pairs of entries, and every move
costs 1.

Machine d: Can swap arbitrary pairs of entries, and a move costs
the distance between the entries.

Question: Can we look at a permutation and easily tell the
minimum cost to sort it?
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Sorting permutations

Inversions

For Machine £, the answer is called the length of the permutation,
and it is equal to the number of inversions. One optimal algorithm
is to always swap the rightmost descent.
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Sorting permutations

Inversions

For Machine £, the answer is called the length of the permutation,
and it is equal to the number of inversions. One optimal algorithm
is to always swap the rightmost descent.

For w = 2537146, we have

2537146 — 2531746 — 2531476 — 2531467 — 2513467
— 2153467 — 2135467 — 2134567 — 1234567
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Sorting permutations

Inversions

For Machine £, the answer is called the length of the permutation,
and it is equal to the number of inversions. One optimal algorithm
is to always swap the rightmost descent.

For w = 2537146, we have

2537146 — 2531746 — 2531476 — 2531467 — 2513467
— 2153467 — 2135467 — 2134567 — 1234567

So ¢(w) =8, and we have 1+ 3+ 1+ 3 = 8 inversions.
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Sorting permutations

Cycles

For Machine a, the answer is called the absolute length or
reflection length, and it is equal to n minus the number of cycles.
One optimal algorithm is to always swap the rightmost excedence
to its correct location.
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Sorting permutations

Cycles

For Machine a, the answer is called the absolute length or
reflection length, and it is equal to n minus the number of cycles.
One optimal algorithm is to always swap the rightmost excedence
to its correct location.

For w = 2537146, we have

2537146 — 2536147 — 2534167 — 2134567 — 1234567
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Sorting permutations

Cycles

For Machine a, the answer is called the absolute length or
reflection length, and it is equal to n minus the number of cycles.
One optimal algorithm is to always swap the rightmost excedence
to its correct location.

For w = 2537146, we have
2537146 — 2536147 — 2534167 — 2134567 — 1234567

So a(w) = 4. We have n =7 and 3 cycles, since
w = (125)(476)(3).
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Sorting permutations

Total displacement

For Machine d, the answer is called the depth, and
Petersen—Tenner showed it is equal to total displacement, which is
the sum of the sizes of excedences. One optimal algorithm is to
always swap the rightmost excedence with the leftmost
sub-excedence to its right.
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Sorting permutations

Total displacement

For Machine d, the answer is called the depth, and
Petersen—Tenner showed it is equal to total displacement, which is
the sum of the sizes of excedences. One optimal algorithm is to
always swap the rightmost excedence with the leftmost
sub-excedence to its right.

For w = 2537146, we have

2537146 — 2531746 — 2531476 — 2531467 — 2135467
— 2134567 — 1234567
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Sorting permutations

Total displacement

For Machine d, the answer is called the depth, and
Petersen—Tenner showed it is equal to total displacement, which is
the sum of the sizes of excedences. One optimal algorithm is to
always swap the rightmost excedence with the leftmost
sub-excedence to its right.

For w = 2537146, we have

2537146 — 2531746 — 2531476 — 2531467 — 2135467
— 2134567 — 1234567

So d(w) = 7, and the sum of sizes of excedences is
1+3+0+3+0+0+0=7.
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Sorting permutations

Comparing the machines

Petersen and Tenner observed that the cost for Machine d of
swapping a single pair is exactly the average of the cost of Machine
a (which is 1) and the cost of simulating that swap with Machine /.
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Sorting permutations

Comparing the machines

Petersen and Tenner observed that the cost for Machine d of
swapping a single pair is exactly the average of the cost of Machine
a (which is 1) and the cost of simulating that swap with Machine /.

Hence '

‘9("")"2"(‘”) < d(w) < f(w).
The first inequality is not an equality because the most efficient
method for Machine d, when simulated by Machine ¢, might not
be most efficient for Machine ¢ (or for Machine a).
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Sorting permutations

Cost Coincidences

The permutations for which d(w) = ¢(w) are the 321 avoiding
permutations. (Petersen—Tenner)
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Sorting permutations

Cost Coincidences

The permutations for which d(w) = ¢(w) are the 321 avoiding
permutations. (Petersen—Tenner)

The permutations for which d(w) = a(w) (and hence
a(w) = ¢(w)) are the 321 and 3412 avoiding permutations.
(Tenner)
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Sorting permutations

Cost Coincidences

The permutations for which d(w) = ¢(w) are the 321 avoiding
permutations. (Petersen—Tenner)

The permutations for which d(w) = a(w) (and hence
a(w) = ¢(w)) are the 321 and 3412 avoiding permutations.
(Tenner)

The permutations for which d(w) = (a(w) + ¢(w))/2 is not
characterized by (mesh) pattern avoidance (BiSC came up with
nothing reasonable), and this seems like a hard problem.
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Signed Permutations

The group B,

A signed permutation is a permutation w on the set
{£1,...,£n} with the property that w(—i) = —w(/i) for all i.

It suffices to specify w(i) for i > 0, so we can think of a signed
permutation as a permutation with the additional property that
some of the entries can be possessed by negativity.

For example, we might have w = 2431756. (To save space, we
draw the negative signs on top of the numbers.)
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Signed Permutations

Machines for B,

Machine £ can swap two adjacent entries or change the sign of the
leftmost entry.
Machine a can
Shuffling: swap a pair of entries at positions i and j
Double unsigning: swap a pair of entries at positions i and j and
change both signs
Single unsigning: change the sign of the entry at position i

Machine d costs (by the Petersen—Tenner average rule) the j — i
for a shuffling move, i +j — 1 for a double unsigning, and i for a
single unsigning. (Intuition: There is a neutral chaotic exorcist at
the far left that changes signs, so unsigning moves need to swing
the letters through that spot.)
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Signed Permutations

Length for B,

The cost for machine £ is the total count of the following:
» Positions i < j with w(i) > w())
» Positions i < j with w(i) 4+ w(j) <0
» Positions i with w(i) <0

For w = 2431756, we have

lw)=B+1+24+1+2)+(2+3+1+1)+3 =19, with sorting
algorithm

2431756 — 2431576 — 2431567 — 2435167 — - - - — 5412367
— 5412367 — - - — 4123567 — 4123567 — - - - — 1234567
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Signed Permutations

Oddness of a signed permutation

We can have a sum & of signed permutations and sum
decompositions defined by ignoring the signs. For example,
2431756 = 2431 @ 312 is the sum decomposition.
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Signed Permutations

Oddness of a signed permutation

We can have a sum & of signed permutations and sum
decompositions defined by ignoring the signs. For example,
2431756 = 2431 @ 312 is the sum decomposition.

Given a signed permutation w, define the oddness of w to be the
number of blocks in the sum decomposition with an odd number
of signed elements.

The negative identity 1--- 7 is the oddest element, with oddness n.
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Signed Permutations

Depth for a signed permutation

We have the following formula for depth for B,

dw)=| S iy -]+ > <|W(/)|;> +°(2W).

w(i)>i w(i)<0

If we write all the entries of the signed permutations, including the
ones at negative positions, the two left terms are half the sum of
sizes of excedences. Single unsigning moves are slightly expensive,
and o(w) counts how many times they need to be used.
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Signed Permutations

Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do
the following to each block in the sum decomposition:
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Signed Permutations

Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do
the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where
x = w(i) is the largest positive entry in w with x > i, and
y = w(j) is the smallest entry in w with i < j < x. Repeat
this step until there is no positive entry x = w(i) with x > i.
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Signed Permutations

Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do
the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where
x = w(i) is the largest positive entry in w with x > i/, and
y = w(j) is the smallest entry in w with i < j < x. Repeat
this step until there is no positive entry x = w(i) with x > i.
2. If there are at least two negative entries, apply a double
unsigning move at positions i and j, where x = w(i) and
y = w(j) are the two negative entries of largest absolute value
in w, and go back to Step 1.
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Signed Permutations

Algorithm for signed permutations

To sort a signed permutation w using the minimum depth, we do
the following to each block in the sum decomposition:

1. If possible apply a shuffling move to positions i and j, where
x = w(i) is the largest positive entry in w with x > i/, and
y = w(j) is the smallest entry in w with i < j < x. Repeat
this step until there is no positive entry x = w(i) with x > i.

2. If there are at least two negative entries, apply a double
unsigning move at positions i and j, where x = w(i) and
y = w(j) are the two negative entries of largest absolute value
in w, and go back to Step 1.

3. If there is one negative entry, apply a single unsigning move
the negative entry, and go back to Step 1.
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Signed Permutations

Algorithm example

For w = 2431756, the formula gives
dw)=(14+2)+(4+1+5-3/2)+1/2=12

2431756 - 2431576 - 2431567 - 2431567 - 4231567 - 1234567
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Signed Permutations

Sketch of proof of formula

We show that our algorithm achieves our formula for d(w), and
that any other sequence of reflections costs more.

It suffices by induction to show that a single step of our algorithm
reduces our conjectured formula for d by the right amount, and
that no move can reduce our conjectured formula by more.
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Signed Permutations

An important property

It turns out each step of our algorithm reduces length by £(t).

This means simulating our algorithm (and hence one optimal use
of Machine d) using Machine ¢ produces an optimal sort using

Machine ¢.
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Even signed permutations

The group D,

The group of signed permutations has an index 2 subgroup
consisting of signed permutations with an even number of negative
entries.

The double unsigning move swapping the leftmost entries is now a
move for Machine £, single unsigning moves are banned, and costs
for double unsigning moves for Machine d go down by 1.
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Even signed permutations

Sum decomposition for D,

For D,, we need to distinguish between two types of sum
decomposition. A type D decomposition requires that each block
have an even number of negative entries, while a type B
decomposition does not.
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Even signed permutations

Sum decomposition for D,

For D,, we need to distinguish between two types of sum
decomposition. A type D decomposition requires that each block
have an even number of negative entries, while a type B
decomposition does not.

If w = 21345786, then the type D decomposition is
w = 21345 @ 231, while the type B decomposition has
w=216191a16 231
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Even signed permutations

Sum decomposition for D,

For D,, we need to distinguish between two types of sum
decomposition. A type D decomposition requires that each block
have an even number of negative entries, while a type B
decomposition does not.

If w = 21345786, then the type D decomposition is
w = 21345 @ 231, while the type B decomposition has
w=216191a16 231

Define o(w) as the number of type B blocks minus the number of
type D blocks (so o(w) = 3).
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Even signed permutations

Depth for an even signed permutation

We have the following formula for depth for D,

dw)={ Y (w() =) |+ D [wi)l—1]+o(w).

w(i)>i w(i)<0

If we write all the entries of the signed permutations, including the
ones at negative positions, the two left terms are half the sum of
sizes of excedences. The last term counts the “wasted” moves that
are needed to join type B blocks so that we can perform the
needed double unsigning moves.
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Comparing Costs

Minimizing over products

We can rephrase the definition of /(w) and a(w) as

)=, o, .
and
aw)=, min,, k

where we take the minima over all ways of writing w as a product
of simple reflections s; or reflections t;.
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Comparing Costs

Reduced products

We can rephrase the definition of d(w) as

k
. 1+ ()
dw) = min 2 =
i=1
where we take the minima over all ways of writing w as a product

of reflections t;.
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Comparing Costs

Reduced products

We can rephrase the definition of d(w) as

k

o 1+ ()
)=, min 2~

where we take the minima over all ways of writing w as a product
of reflections t;.

The “important property” means that it is always possible (for
classical groups) to restrict to reduced factorizations, meaning
factorizations w = t7 ... t, where
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Comparing Costs

Reduced reflection length

Define the reduced reflection length a'(w) as
a(w)= min k.
W=ty...tx
where we take the minimum over the restricted set of products

w =t1...t, with

U(w) = Ze(t,-).
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Comparing Costs

Reduced reflection length

Define the reduced reflection length a'(w) as
/ _ .
dW)=, i,

where we take the minimum over the restricted set of products
w =t1...t, with

U(w) = Ze(t,-).

Since depth can always be given by a reduced factorization, we
have

a’(w)+€(w).

d(w) = >
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Comparing Costs

Comparing length and depth

An element in a Coxeter group is short-braid-avoiding if no
reduced decomposition (product of simple reflections realizing w)
has a consecutive subexpression s;s;s;.
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Comparing Costs

Comparing length and depth

An element in a Coxeter group is short-braid-avoiding if no
reduced decomposition (product of simple reflections realizing w)
has a consecutive subexpression s;s;s;.

It is easy to show that d(w) = ¢(w) if and only if the depth of w
is realized by a reduced factorization and w is short-braid-avoiding.
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Comparing Costs

Comparing length and depth

An element in a Coxeter group is short-braid-avoiding if no
reduced decomposition (product of simple reflections realizing w)
has a consecutive subexpression s;s;s;.

It is easy to show that d(w) = ¢(w) if and only if the depth of w
is realized by a reduced factorization and w is short-braid-avoiding.

Since the depth is always realized by a reduced factorization in S,
B, and D,, this shows that d(w) = ¢(w) in those groups if and
only if w is short-braid-avoiding.
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Comparing Costs

Short-braid-avoidance in B, and D,

For permutations, this reproves the Petersen—Tenner theorem that
d(w) = ¢(w) if and only if w avoids 321.

In B,, short-braid-avoiding is equivalent to Stembridge’s notion of
fully commutative top-and-bottom, which is characterized by
avoiding 12, 12, 21, 321, 321, and 321

In D, (and any simply-laced group), short-braid-avoiding is
equivalent to being fully commutative, which is characterized by
Billey-Postnikov avoiding 321. (This is avoiding 321 as a
permutation of {£1,...,4+n}, not allowing the simultaneous use
of opposite entries.)
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Comparing Costs

Achieving the lower bound

The elements for which a(w) = d(w) (and hence both are equal to
¢(w)) are the boolean elements, where no reduced decomposition
has any simple reflection more than once. These are characterized

by avoiding 10 patterns for B, and 20 for D, (Tenner).

The more general question of when d(w) = (a(w) + ¢(w))/2
seems hard and is not characterized by pattern avoidance.
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Comparing Costs

Problems

v

Is depth realized by a reduced factorization into transpositions
for all elements in all Coxeter groups?

v

Can depth be realized by a product of a(w) reflections (even
for B, or Dp)?

Find the generating function for depth in B, or D, (See
Guay-Paquet—Petersen for S,)

v

>
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Characterize depth for affine Coxeter groups
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Comparing Costs

Thank you for your attention!
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