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Hessenberg varieties

Let Fn be the variety of complete flags

F := {F• = {0} ( F1 ( · · · ( Fn−1 ( kn}.

Set an operator X : kn → kn and a function

h : {1, . . . , n} → {1, . . . , n}.

(Only h with h(i + 1) ≥ h(i) ≥ i for all i will have meaningful
results.) Write h = (h(1), . . . , h(n).

The Hessenberg variety YX ,h is the subvariety of Fn consisting of
all points corresponding to flags F• with the property that

XFi ⊆ Fh(i).
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Regular nilpotent Hessenberg varieties

A regular nilpotent Hessenberg variety is one where X is regular
nilpotent, so X is (conjugate to)

X :=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 .
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Our formula, I

Given h, let wh ∈ S2n be the permutation where

I 1, . . . , n appear in order (i.e. w−1(1) < · · · < w−1(n))

I n + 1, . . . , 2n appear in order

I wh(i + h(i)) > n for all i and w(j) < n otherwise.

Let xh be a list of variables where xi appears at the (i + h(i))-th
spot and x1, . . . , xn also appear in order in the other spots.

As a running example, let n = 5 and h = (3, 4, 4, 5, 5). Then

wh = 123647859a

and
xh = (x1, x2, x3, x1, x4, x2, x3, x5, x4, x5).

Alexander Woo (joint work with Erik Insko and Julianna Tymoczko)

Cohomology and K-theory classes of regular nilpotent Hessenberg varieties



Our formula, II

Then
[YX ,h] = Gwh

(x) ∈ K 0(Fn)

and
[YX ,h] = Swh

(x) ∈ H∗(Fn)

where G and S are the usual Grothendieck and Schubert
polynomials.
For h = (3, 4, 4, 5, 5),

[YX ,h] = G123647859a(x1, x2, x3, x1, x4, x2, x3, x5, x4, x5).
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Caveats

A few warnings in interpreting the formula:

I The xi do stand for the usual bundles/Chern classes.

I The formulas are correct only modulo the ideal defining
K 0(Fn) or H∗(Fn).

I In particular, if one expands the result in terms of
Grothendieck/Schubert polynomials, one does not only get
Grothendieck/Schubert polynomials for u ∈ Sn, and the
coefficients for Grothendieck/Schubert polynomials for
u ∈ Sm, m < n may be negative.

I The formula does not agree on the nose with the formula (for
cohomology) of Anderson–Tymoczko.
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The Knutson–Miller principle, I

Let
π : GLn → Fn

be the map given by sending a matrix g to the flag F• where Fi is
the span of the first i columns of g .

Let Mn be the space of n × n matrices, with the usual embedding
GLn → Mn.

The torus T of diagonal n × n matrices acts on M by multiplying
on the right, which rescales columns.
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The Knutson–Miller principle, II

If Y ⊆ Fn is a variety, and Z ⊆ Mn is a variety such that
π(Z ∩ GLn) = Y , then

[Y ] = [Z ]T ,

where [Z ]T is the T -equivariant K-theory/cohomology class under
the action described above.

Note Mn is affine space with T rescaling coordinates, so [Z ]T can
be calculated by combinatorial commutative algebra as
K-polynomials or multidegrees.
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Matrix equations for Hessenberg variety, I

Suppose

g =

z11 . . . z1n
...

...
zn1 . . . znn


represents a flag, so Fi is the span of the first i columns.

Then XFi is the span of the first i columns of

Xg =


z21 . . . . . . z2n

...
...

zn1 . . . . . . znn
0 . . . . . . 0

 .

Alexander Woo (joint work with Erik Insko and Julianna Tymoczko)

Cohomology and K-theory classes of regular nilpotent Hessenberg varieties



Matrix equations for Hessenberg variety, II

Then XFi ⊆ Fj if the matrix
z11 . . . z1j z21 . . . z2i

...
...

...
...

z(n−1)1 . . . z(n−1)j zn1 . . . zni
zn1 . . . znj 0 . . . 0


has rank j . (It cannot have rank less than j if g was originally
invertible and hence represented a flag.)
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Matrix equations for Hessenberg variety, Example

We can put all these rank conditions together as rank conditions
for a single matrix. For our running example (n = 5,
h = (3, 4, 4, 5, 5), or XF1 ⊆ F3,XF3 ⊆ F4), we get

z11 z12 z13 z21 z14 z22 z23 z15 z24 z25
z21 z22 z23 z31 z24 z32 z33 z25 z34 z35
z31 z32 z33 z41 z34 z42 z43 z35 z44 z45
z41 z42 z43 z51 z44 z52 z53 z45 z54 z55
z51 z52 z53 0 z54 0 0 z55 0 0


where the first 4 columns have rank 3 and the first 7 columns have
rank 4.

Let ZX ,h ⊆ Mn be the scheme of n × n matrices satisfying these
equations, so YX ,h = π(ZX ,h ∩ GLn).
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Matrix Schubert varieties

Let w be an a× b partial permutation matrix, meaning w is a
0/1 matrix with at most one 1 in each row or column.
Given a partial permutation matrix w , we have its rank matrix,
with rpq(w) being the number of 1′s (weakly) NW of (p, q).

w =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

 r =


1 1 1 1 1 1 1
1 2 2 2 2 2 2
1 2 3 3 3 3 3
1 2 3 3 4 4 4
1 2 3 3 4 4 4


The matrix Schubert variety Aw is the set of all a× b matrices
whose NW rank p × q submatrices have rank rw (p, q).
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Essential sets

Not every rank condition defining Aw is necessary. Fulton showed
that the essential set is the unique minimal set of conditions that
suffices.

3 4
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Hessenberg equations and matrix Schubert varieties

The essential rank conditions above are precisely the conditions
enforcing XF1 ⊆ F3, XF3 ⊆ F4 on

z11 z12 z13 z21 z14 z22 z23 z15 z24 z25
z21 z22 z23 z31 z24 z32 z33 z25 z34 z35
z31 z32 z33 z41 z34 z42 z43 z35 z44 z45
z41 z42 z43 z51 z44 z52 z53 z45 z54 z55
z51 z52 z53 0 z54 0 0 z55 0 0


This means specializing the matrix Schubert variety to variables as
in the matrix above gives ZX ,h.
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Knutson–Miller theorem

Knutson and Miller proved in 2003

Theorem
Let Aw be a matrix Schubert variety. Then

I The K-theory/cohomology class of Aw is given by Gw or Sw ,
each evaluated in the torus weights of the columns. (Here, w
is the permutation (in a larger matrix) whose essential set is
the same as the essential set of w.)

I Aw is Cohen–Macaulay.

(There is more to this theorem.)
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Variable specialization and K-polynomials

Let R = k[a], S = k[z], and f : R → S be a surjective,
T -equivariant map that sends variables to variables. Let A = R/I .
Then

[A]R =
∑
i

(−1)i [
i

Tor(A,S)]S ,

where [A]R is the K-polynomial of A (as an R-module).
If ker f is generated by (part of) a regular sequence on A, then
Tori (A,S) = 0 for i > 0, and [A]R = [f∗(A)]S .
If A is Cohen–Macaulay, then any regular system of parameters on
A is a regular sequence, so it would suffice to show
codim Spec(A) ∩ Spec(S) = codim Spec(A) + codim Spec(S).
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Unfortunately..., but...

As a subvariety of Mn, Zw ,h does NOT have the right codimension
(except in small cases).
However, YX ,h and hence ZX ,h ∩ GLn DOES have the right
codimension. In other words ZX ,h fails to have the right
codimension only because of some “junk” components contained
in Mn \ GLn.
This means that Spec(Tor i (Aw ,h, S)) ∩ GLn is supported only on
the locus of singular matrices Mn \ GLn.
For the Knutson–Miller principle, we don’t need to worry about
anything on Mn \ GLn, so our formula works.
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What we couldn’t figure out

The scheme ZX ,h has junk components that are not in π−1(YX ,h).

Can we find the additional equations that will cut out π−1(YX ,h)?
Unfortunately, this is probably at least as complicated as the
analogous problem of Berget–Fink for matrix torus orbit closures.

The Hessenberg variety YX ,h has a natural decomposition given by
intersections with certain specific Schubert cells. Can we find
classes for the closures of these cells? The same technique works
for some of these cells, but doesn’t work in general. There are
tricks that can get us some more cells.
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Thank you

Thank you for your attention.
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