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Schubert varieties

Let:

I G be a semisimple algebraic group (GLn)

I B be a Borel subgroup (upper triangular matrices)

I W be the Weyl group of G (Sn)

I G/B be the flag variety.

For each w ∈W , we have the Schubert variety

Xw = BwB/B ⊆ G/B,

and `(w) = dimXw = #Inv(w)
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Pattern avoidance on Schubert varieties

Theorem (Lakshmibai–Sandhya ’90)

For G = GLn, the Schubert variety Xw is smooth if w pattern
avoids 4231 and 3412.

Definition by example: 2573461 contains 4231 in 4 ways, by
2573461, 2573461, 2573461, 2573461.

3562714 avoids 4231.
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Interval pattern avoidance

Definition
Given u, v ∈ Sm and x ,w ∈ Sn, we say [x ,w ] interval contains
[u, v ] if

I x contains u and w contains v in the same places

I x and w agree in all other places

I `(w)− `(x) = `(v)− `(u)

The first 2 conditions determine x from u, v , and w , so we can
talk about w containing or avoiding [u, v ].

Example: 35142 contains 3412, but [13245, 35142] does not
contain [1324, 3412], since `(35142)− `(13245) = 5 but
`(3412)− `(1324) = 3.
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Universality

Theorem (W-Yong ’08)

Given any local property of varieties preserved under closure and
product with An, the set of w such that Xw has this property is
characterized by avoiding some set {[ui , vi ]} of interval patterns
The proof is by showing that, up to products with An, a
neighborhood of Xw at the point xB/B is isomorphic to a
neighborhood of Xv at uB/B.
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K -orbit closures

Let θ be an involution on G , K = G θ the subgroup of elements
fixed by θ.

Then K acts on G/B with finitely many orbits.

Motivation (Lusztig–Vogan): Kazhdan–Lusztig–Vogan polynomials
connect real representation theory to geometry of K -orbit closures.

For G = GLn, K = GLp × GLq, (corresponding to the real group
U(p, q)) orbits can be indexed by (p, q)-clans. We denote by Xγ
the K -orbit closure corresponding to the clan γ.
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Clans

A clan is a partial matching on n linearly ordered vertices, with
unmatched vertices given a sign (i.e. + or −).

A clan is a (p, q)-clan if the number of +’s and the number of
matchings adds up to p, and the number of −’s and the number of
matchings adds up to q.

We draw clans like:

+ − , or , or + − + .
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Pattern avoidance on clans

There is a natural notion of pattern avoidance on clans:

+ − + contains + − and − + .

+ − + avoids + − and + .
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Smooth K -orbit closures

Theorem (McGovern ’11)

A K-orbit closure Xγ is smooth if and only if γ avoids ,

+− , −+ , + , − , + , − , and
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Length of a clan

The length of a clan is

`(γ) =

 ∑
i ,j matched

j − i

−# crossing pairs

or the number of matchings, plus the number of places enclosed by

matchings, except a crossing pair , counts only once, not
twice.

We have
dimXγ = pq + `(γ).
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Interval pattern avoidance

Definition
Given clans (p, q)-clans σ and τ and (p′, q′)-clans δ and γ (with
p′ ≥ p and q′ ≥ q), we say [δ, γ] interval contains [σ, τ ]

I γ contains τ and δ contains σ in the same places

I δ and γ agree in all other places

I `(γ)− `(δ) = `(τ)− `(σ)

The first 2 conditions determine δ from σ, τ , and γ, so we can talk
about γ containing or avoiding [σ, τ ].
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Universality

Theorem (W-Wyser-Yong)

Given any local property of varieties preserved under closure and
smooth morphisms, the set of γ such that Xγ has this property is
characterized by avoiding some set of interval patterns.
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Proof ideas

We work with B-orbit closures on G/K .

Given δ, we take a transverse slice Sδ to G/K at a point of the of
δ. There is a smooth morphism Sδ ∩ Xγ → Xγ with image a
neighborhood of our point.

We show by looking at explicit defining rank conditions on local
coordinates that

Sδ ∩ Xγ ∼= Sσ ∩ Xτ

when [δ, γ] contains [σ, τ ].
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Thank you

Thank you for your attention.

Thanks to Kiumars and Frank for organizing this wonderful session.
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