Interval Pattern Avoidance for K-orbit closures

Alexander Woo
(joint work with Ben Wyser and Alexander Yong)

Session on Combinatorial Algebraic Geometry
CMS Winter Meeting
December 4, 2016
Let:

- G be a semisimple algebraic group (GL_n)
- B be a Borel subgroup (upper triangular matrices)
- W be the Weyl group of G (S_n)
- G/B be the flag variety.

For each $w \in W$, we have the Schubert variety

$$X_w = \overline{BwB/B} \subseteq G/B,$$

and $\ell(w) = \dim X_w = \#\text{Inv}(w)$
Theorem (Lakshmibai–Sandhya ’90)

For $G = GL_n$, the Schubert variety X_w is smooth if w pattern avoids 4231 and 3412.

Definition by example: 2573461 contains 4231 in 4 ways, by 25\textbf{7}3461, 257\textbf{3}461, 2573\textbf{4}61, 25734\textbf{6}1.

3562714 avoids 4231.
Definition
Given $u, v \in S_m$ and $x, w \in S_n$, we say $[x, w]$ interval contains $[u, v]$ if

- x contains u and w contains v in the same places
- x and w agree in all other places
- $\ell(w) - \ell(x) = \ell(v) - \ell(u)$

The first 2 conditions determine x from $u, v,$ and w, so we can talk about w containing or avoiding $[u, v]$.

Example: 35142 contains 3412, but $[13245, 35142]$ does not contain $[1324, 3412]$, since $\ell(35142) - \ell(13245) = 5$ but $\ell(3412) - \ell(1324) = 3$.

Alexander Woo (joint work with Ben Wyser and Alexander Yong)
Theorem (W-Yong ’08)

Given any local property of varieties preserved under closure and product with \mathbb{A}^n, the set of w such that X_w has this property is characterized by avoiding some set $\{[u_i, v_i]\}$ of interval patterns.

The proof is by showing that, up to products with \mathbb{A}^n, a neighborhood of X_w at the point xB/B is isomorphic to a neighborhood of X_v at uB/B.
Let θ be an involution on G, $K = G^\theta$ the subgroup of elements fixed by θ.

Then K acts on G/B with finitely many orbits.
Let θ be an involution on G, $K = G^\theta$ the subgroup of elements fixed by θ.

Then K acts on G/B with finitely many orbits.

Let θ be an involution on G, $K = G^\theta$ the subgroup of elements fixed by θ.

Then K acts on G/B with finitely many orbits.

For $G = GL_n$, $K = GL_p \times GL_q$, (corresponding to the real group $U(p, q)$) orbits can be indexed by (p, q)-clans. We denote by X_γ the K-orbit closure corresponding to the clan γ.

Alexander Woo (joint work with Ben Wyser and Alexander Yong)
Interval Pattern Avoidance for K-orbit closures
A clan is a partial matching on n linearly ordered vertices, with unmatched vertices given a sign (i.e. + or −).

A clan is a (p, q)-clan if the number of +’s and the number of matchings adds up to p, and the number of −’s and the number of matchings adds up to q.
A clan is a partial matching on \(n \) linearly ordered vertices, with unmatched vertices given a sign (i.e. + or −).

A clan is a \((p, q)\)-clan if the number of +’s and the number of matchings adds up to \(p \), and the number of −’s and the number of matchings adds up to \(q \).

We draw clans like:

\[
+ \quad - \quad , \text{ or } \quad + \quad - \quad + \quad , \text{ or } \quad + \quad - \quad + \quad .
\]
Pattern avoidance on clans

There is a natural notion of pattern avoidance on clans:

\[+\, -\, + \text{ contains } +\, - \text{ and } -\, +. \]
Pattern avoidance on clans

There is a natural notion of pattern avoidance on clans:

\[+ - + \quad \text{contains} \quad + - \quad \text{and} \quad - + \.
\]

\[+ - + \quad \text{avoids} \quad + - \quad \text{and} \quad + + \.
\]
Smooth K-orbit closures

Theorem (McGovern ’11)

A K-orbit closure X_γ is smooth if and only if γ avoids \bigcap, \bigcap, \bigcap, \bigcap, \bigcap, \bigcap, and \bigcap.

Alexander Woo (joint work with Ben Wyser and Alexander Yong)

Interval Pattern Avoidance for K-orbit closures
The length of a clan is

\[\ell(\gamma) = \left(\sum_{i,j \text{ matched}} j - i \right) - \text{\# crossing pairs} \]

or the number of matchings, plus the number of places enclosed by matchings, except a crossing pair, counts only once, not twice.

We have

\[\dim X_\gamma = pq + \ell(\gamma). \]
Definition
Given clans \((p, q)\)-clans \(\sigma\) and \(\tau\) and \((p', q')\)-clans \(\delta\) and \(\gamma\) (with \(p' \geq p\) and \(q' \geq q\)), we say \([\delta, \gamma]\) **interval contains** \([\sigma, \tau]\)

- \(\gamma\) contains \(\tau\) and \(\delta\) contains \(\sigma\) in the same places
- \(\delta\) and \(\gamma\) agree in all other places
- \(\ell(\gamma) - \ell(\delta) = \ell(\tau) - \ell(\sigma)\)

The first 2 conditions determine \(\delta\) from \(\sigma, \tau\), and \(\gamma\), so we can talk about \(\gamma\) containing or avoiding \([\sigma, \tau]\).
Universality

Theorem (W-Wyser-Yong)

Given any local property of varieties preserved under closure and smooth morphisms, the set of γ such that X_γ has this property is characterized by avoiding some set of interval patterns.
We work with B-orbit closures on G/K.

Given δ, we take a transverse slice S^δ to G/K at a point of the of δ. There is a smooth morphism $S^\delta \cap X_\gamma \to X_\gamma$ with image a neighborhood of our point.

We show by looking at explicit defining rank conditions on local coordinates that

$$S^\delta \cap X_\gamma \cong S^\sigma \cap X_\tau$$

when $[\delta, \gamma]$ contains $[\sigma, \tau]$.
Thank you for your attention.
Thank you for your attention.

Thanks to Kiumars and Frank for organizing this wonderful session.