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ABSTRACT. D. Grigoriev-G. Koshevoy recently proved that tropical Schur polynomials
have (at worst) polynomial tropical semiring complexity. They also conjectured tropical
skew Schur polynomials have at least exponential complexity; we establish a polynomial
complexity upper bound. Our proof uses results about (stable) Schubert polynomials, due
to R. P. Stanley and S. Billey-W. Jockusch-R. P. Stanley, together with a sufficient condition
for polynomial complexity that is connected to the saturated Newton polytope property.

1. INTRODUCTION

The tropicalization of a polynomial

f =
∑

(i1,i2,...,in)∈Zn≥0

ci1,...,inx
i1
1 x

i2
2 · · ·xinn ∈ C[x1, x2, . . . , xn]

(with respect to the trivial valuation val(a) = 0 for all a ∈ C∗) is defined to be

(1) Trop(f) := max
i1,...,in

{i1x1 + · · ·+ inxn}.

This is a polynomial over the tropical semiring (R,⊕,�), where

a⊕ b = max(a, b) and a� b = a+ b

respectively denote tropical addition and multiplication, respectively. We refer to the
books [ItMiSh09, MaSt15] for more about tropical mathematics.

Let Symn denote the ring of symmetric polynomials in x1, . . . , xn. A linear basis of Symn

is given by the Schur polynomials. These polynomials are indexed by partitions λ (identi-
fied with their Ferrers/Young diagrams). They are generating series over semistandard
Young tableaux T of shape λ with entries from [n] := {1, 2, . . . , n}:

sλ(x1, . . . , xn) :=
∑
T

xT where xT :=
∏
i

x#i’s in T
i .

The importance of this basis stems from its applications to, for example, enumerative
and algebraic combinatorics, the representation theory of symmetric groups and general
linear groups, and Schubert calculus on Grassmannians; see, for example, [Fu97, St99].

D. Grigoriev and G. Koshevoy [GrKo16] studied the complexity of the tropical polyno-
mial Trop(sλ) over (R,⊕,�). An arithmetic circuit is a circuit where inputs are each labelled
by a single variable xi or a fixed constant, each gate performs a single ⊕ or � operation,
and there is one output. An arithmetic circuit C naturally gives an expression res(C), the
tropical polynomial in the variables x1, . . . , xn that it computes. The circuit C evaluates f if
res(C) = f as tropical polynomials, meaning that one can show res(C) = f using the trop-
ical semiring axioms, by which we mean the semiring axioms along with the idempotence
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property a⊕ a = a. The tropical semiring complexity of f is the smallest number of gates in
a circuit C evaluating f ; see [JeSn82, Section 2].

The following is [GrKo16, Theorem 2.1]:

Theorem 1.1 (D. Grigoriev-G. Koshevoy). The tropical semiring complexity of Trop(sλ) is at
most O(n2 · λ1).

The skew-Schur polynomial sλ/µ(x1, . . . , xn) =
∑

T x
T is the generating series for semis-

tandard tableau of skew shape λ/µ with entries from [n]. When µ = ∅ then sλ/∅ = sλ;
hence skew-Schur polynomials generalize Schur polynomials. Also,

(2) sλ/µ =
∑
ν

cλµ,νsν ,

where cνλ,µ ∈ Z≥0 is the Littlewood-Richardson coefficient. The next statement is from [GrKo16,
Section 5]:

Conjecture 1.2 (D. Grigoriev-G. Koshevoy). The tropical semiring complexity of Trop(sλ/µ) is
at least exponential.

We will show the following:

Theorem 1.3. There is an explicitly described partition β, depending on λ/µ, with β1 = λ1, such
that

Trop(sλ/µ(x1, . . . , xn)) = Trop(sβ(x1, . . . , xn))

over the tropical semiring (R,⊕,�).
Example 1.4. Let λ = (2, 1) and µ = (1). Then the tableaux contibuting to sλ/µ are:

1
1

, 1
2

, 2
1

, 2
2

.

Hence sλ/µ = x21 + 2x1x2 + x22. On the other hand, (2) in this case is:

sλ/µ = s1,1 + s2 = (x1x2) + (x1x2 + x21 + x22).

By definition,

Trop(sλ/µ) = max{x1 + x2, x1 + x2, 2x1, 2x2}
= x1 � x2 ⊕ x1 � x2 ⊕ x�21 ⊕ x�22

= x1 � x2 ⊕ x�21 ⊕ x�22 (idempotence)
= Trop(s2),

in agreement with Theorem 1.3. �

The following addresses Conjecture 1.2:

Corollary 1.5 (of Theorems 1.1 and 1.3). Trop(sλ/µ) has at most O(n2 · λ1) tropical semiring
complexity.

In Section 2, we describe a sufficient condition for a tropicalized symmetric polyno-
mial to have polynomial tropical semiring complexity. This condition uses the notion of
a polynomial having a saturated Newton polytope [MoToYo17]. Section 3 applies this con-
dition to Stanley symmetric polynomials [St84]. Since skew-Schur polynomials are a special
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case of Stanley symmetric polynomials, we thereby deduce Theorem 1.3. In Section 4, we
remark on how this condition applies to other families of symmetric polynomials.

2. DOMINANCE ORDER, NEWTON POLYTOPES AND SATURATION

Let Par(d) = {λ : λ ` d} be the set of partitions of size d. Dominance order ≤D on Par(d)
is defined by

(3) µ ≤D λ if
k∑
i=1

µi ≤
k∑
i=1

λi for all k ≥ 1.

Definition 2.1. Suppose f ∈ Symn is homogeneous of degree d such that

f =
∑

µ∈Par(d)

cµsµ

with cµ ≥ 0 for all µ. Moreover, assume there exists λ with cλ 6= 0 such that cµ 6= 0 only if
µ ≤D λ. Then we say f is dominated by sλ. �

The Newton polytope of a polynomial f is the convex hull of its exponent vectors, so

Newton(f) = conv((i1, i2, . . . , in) : ci1,i2,...,in 6= 0}) ⊆ Rn.

C. Monical, N. Tokcan and the second author [MoToYo17] define f to have saturated New-
ton polytope (SNP) if ci1,...,in 6= 0 whenever (i1, . . . , in) ∈ Newton(f).

The permutahedron of λ = (λ1, . . . , λn), denoted Pλ, is the convex hull of the Sn-orbit of
λ in Rn. It follows from R. Rado’s theorem [Ra52] that

Newton(sλ) = Pλ and Newton(sµ) ⊆ Newton(sλ) if and only if µ ≤D λ.

A consequence of R. Rado’s theorem [MoToYo17, Proposition 2.5] is therefore:

Proposition 2.2. If f ∈ Symn is dominated by sλ, then f is SNP, and

Newton(f) = Newton(sλ) = Pλ.

We give a technical strengthening of [GrKo16, Theorem 2.5]:

Proposition 2.3 (Sufficient condition for polynomial complexity). Suppose f ∈ Symn is
dominated by sλ(x1, . . . , xn). Then Trop(f) = Trop(sλ) over the tropical semiring (R,⊕,�).
Therefore, f has at most O(n2 · λ1) tropical semiring complexity.

Proof. By Proposition 2.2,

(4) Newton(f) = Newton(sλ),

and f is SNP. This proves the first statement.
At this point, we can appeal to Theorem 1.1 to obtain the second claim. However, for

convenience, we recall the ideas from [GrKo16, Theorem 2.5], thus indicating the under-
lying circuit. There it is shown that

(5) Newton(sλ)[Z] =
∑

1≤k≤λ1

Newton(eλ′k)[Z].

3



In the Minkowski sum of (5),

ek =
∑

1≤j1<j2<...<jk≤n

xj1 · · ·xjk

is the elementary symmetric polynomial of degree k. Also, λ′ is the conjugate partition of λ,
obtained by transposing the Young diagram for λ. Finally, for a polytope P ⊆ Rn, P [Z]
denotes the set of integer lattice points of P .

Combining (4) and (5), we see

(6) Newton(f)[Z] =
∑

1≤k≤λ1

Newton(eλ′k)[Z].

By Proposition 2.2, f is SNP. This property of f , together with (6), implies

(7) Trop(f) =
⊙

1≤k≤λ1

Trop(eλ′k),

as tropical polynomials.
Therefore, following loc. cit., to calculate Trop(f) it suffices to compute Trop(eλ′k) for

1 ≤ k ≤ λ1. The latter has at worst O(n2) complexity, using the (tropicalization) of the
Pascal-type recurrence

ek(x1, . . . , xn) = ek(x1, . . . , xn−1) + xnek−1(x1, . . . , xn−1).

This proves the second claim. �

Remark 2.4. The assumption in Definition 2.1 that f be Schur-positive (cµ ≥ 0 for each
µ) is needed for Proposition 2.2. Consider the monomial symmetric polynomial mλ :=∑

θ x
θ1
1 · · ·xθnn , where the sum is over distinct rearrangements of λ. It is true that mλ =∑

µ≤Dλ Iλ,µsµ, where Iλ,λ = 1. Yet, {mλ} has exponential complexity, by [GrKo16]. �

3. STANLEY SYMMETRIC POLYNOMIALS AND THE PROOF OF THEOREM 1.3

For any permutation w, R. P. Stanley [St84] defined the symmetric power series

Fw =
∑

a∈Red(w)

∑
b∈C(a)

xb,

where the following notation is used. The set Red(w) consists of the reduced words for w
in the simple transpositions si = (i i + 1). This means a = (a1, a2, . . . , a`) ∈ Red(w) if and
only if sa1sa2 · · · sa` = w and ` = `(w) is the number of inversions of w. Furthermore, by
definition, b = (b1, . . . , b`) ∈ C(a) if and only if

• 1 ≤ b1 ≤ b2 ≤ · · · ≤ b`; and
• ai < ai+1 =⇒ bi < bi+1.

Finally, set xb := xb1xb2 · · ·xb` . (This actually defines Fw−1 in [St84]. Thus we use the
results of loc. cit. with this swap of convention.)

Remark 3.1. The original motivation for Fw is that #Red(w) = [x1x2 · · ·x`]Fw. If we define
awλ as the coefficients in

(8) Fw =
∑
λ

awλsλ,
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then awλ ∈ Z≥0. This nonnegativity is proved by work of [EdGr87] (see also [LaSc82]).
In fact, awλ is a generalization of the Littlewood-Richardson coefficient. A theorem of
H. Narayanan [Na06] states that computation of cνλ,µ is #P-complete in L. Valiant’s com-
plexity theory for counting problems [Va79]. Hence awλ is a #P-complete counting prob-
lem. In particular, this means that there is no polynomial time algorithm for computing
either cνλ,µ or awλ unless P = NP.

Now, [x1 . . . x`]sλ = fλ counts standard Young tableaux of shape λ. These numbers
are computed by the famous hook-length formula. The resulting enumeration #Red(w) =∑

λ awλf
λ establishes that #Red(w) is a #P counting problem. Is it #P -complete? �

Recall that the Rothe diagram of w is given by

D(w) = {(i, j) : 1 ≤ i, j ≤ n, j < w(i), i < w−1(j)}.

Pictorially, this is described by placing •’s in positions (i, w(i)) (in matrix notation), strik-
ing out boxes below and to the right of each •. Then D(w) consists of the remaining
boxes.

For example, if

(9) w = 4 1 5 2 7 3 9 6 10 8 ∈ S10 (in one line notation),

then D(w) is depicted by:

ss ss ss ss ss
For w ∈ Sm, set qi to be the number of boxes of D(w) in column i (counting from the

left) for 1 ≤ i ≤ m. Then (q1, q2, . . . , qm) is the code of w−1. Let βmax(w) be the partition
obtained by sorting (q1, q2, . . . , qm) in decreasing order and taking the conjugate shape.

Theorem 3.2 (Complexity of tropical Stanley polynomials). Let w ∈ Sm. Then

Trop(Fw(x1, . . . , xn)) = Trop(sβmax(w)(x1, . . . , xn))

and hence the tropical semiring complexity of Trop(Fw(x1, . . . , xn)) is at most O(n2 · βmax(w)1).

Proof. By [St84, Theorem 4.1] (up to convention), if aw,λ 6= 0, then

λ ≤D βmax(w).

Since the awλ in (8) are positive, if Fw(x1, . . . , xn) is nonzero, then aw,βmax(w) 6= 0 and Fw is
dominated by sβmax(w). Now use Proposition 2.3. �
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Proof of Theorem 1.3 (and Corollary 1.5): We show that sλ/µ(x1, . . . , xn) is dominated by
sβ(x1, . . . , xn) for some shape β (to be determined) with β1 = λ1.

Given λ/µ, construct a permutation wλ/µ by filling all boxes in the same northwest-
southeast diagonal with the same entry, starting with 1 on the northeastmost diagonal
and increasing consecutively as one moves southwest. Call this filling Tλ/µ.

For instance, if λ/µ = (5, 4, 3, 2, 1)/(2, 2, 1, 0, 0) then

Tλ/µ = 3 2 1
4 3

6 5
8 7
9

Let (r1, r2, . . . , r|λ/µ|) be the left-to-right, top-to-bottom, row reading word of Tλ/µ. In
our example, this is (3, 2, 1, 4, 3, 6, 5, 8, 7, 9).

Define wλ/µ = sr1sr2 · · · sr|λ/µ| . By [BiJoSt93, Corollary 2.4],

Fwλ/µ(x1, . . . , xn) = sλ/µ(x1, . . . , xn) ∈ Symn.

By [BiJoSt93, Section 2], λ/µ is obtained by removing empty rows and columns of
D(wλ/µ) and reflecting across a vertical line. In our example, wλ/µ is the permutation
(9). The reader can check from the Rothe diagram that this process gives λ/µ.

By definition, βmax(wλ/µ) is the conjugate of the decreasing rearrangement of the code of
w−1λ/µ. Hence, in our example, the code of w−1λ/µ is (1, 2, 3, 0, 0, 2, 0, 2, 0, 0), which rearranges
to (3, 2, 2, 2, 1, 0, 0, 0, 0, 0). Therefore,

βmax(wλ/µ) =
′

= .

(Thus, βmax(wλ/µ) is obtained from λ/µ by first pushing the boxes in each column north
and left-justifying the result.)

Since the coefficients cλµ,ν in the Schur expansion (2) are positive, sλ/µ(x1, . . . , xn) is dom-
inated by sβ , where β = βmax(wλ/µ). Hence, by Theorem 2.3,

Trop(sλ/µ(x1, . . . , xn)) = Trop(sβ(x1, . . . , xn))

over the tropical semiring (R,⊕,�). By the above process from [BiJoSt93] relatingD(wλ/µ)
and λ/µ,

β1 = βmax(wλ/µ)1 = λ1,

as desired. Hence, Theorem 1.3 holds.
To conclude Corollary 1.5, we may now either apply Theorem 1.1 or Theorem 3.2. �

4. SOME OTHER SYMMETRIC POLYNOMIALS

In [MoToYo17, Sections 2 and 3], some symmetric polynomials are observed to be SNP
because they are dominated by sλ (for some λ), or for other reasons. These include:

(1) J. R. Stembridge’s polynomial FM for a totally nonnegative matrix M [St91];
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(2) the cycle index polynomial cG of a subgroup G 6 Sn (from Redfield-Pólya theory);
(3) C. Reutenauer’s qλ basis of Symn [Re95];
(4) the symmetric Macdonald polynomial (where (q, t) ∈ C2 is generic);
(5) the Hall-Littlewood polynomial (for any positive evaluation of t); and
(6) Schur P− and Schur Q− polynomials.

Consequently, by Proposition 2.3, the tropicalizations of these polynomials equal some
tropical Schur polynomial. Therefore, as with skew Schur polynomials, one obtains im-
mediate tropical semiring complexity implications:

• The polynomials (1) and (2) are dominated by s(n); see [MoToYo17, Theorem 2.28]
and [MoToYo17, Theorem 2.30]. Hence Proposition 2.3 shows their tropicalizations
have O(n3) complexity. In fact, since Trop(s(n)) = Trop((x1 + · · ·+ xn)

n) as tropical
polynomials, they have O(n) complexity (see [FoGrNoSc16, Theorem 1.4] for a
nontropical version of this statement).
• For (3), if λ = (λ1, . . . , λ`, 1

r) where each λi ≥ 2, then qλ is dominated by sa,b where
a = |λ| − ` and b = ` (see [MoToYo17, Theorem 2.3.2] and specifically its proof).
Hence Proposition 2.3 asserts Trop(qλ) has O(n2 · (|λ| − `)) complexity.
• For a generic choice of q, t ∈ C2, it follows from [MoToYo17, Section 3.1] that if
Pλ(X; q, t) ∈ Symn is the Macdonald polynomial, then Trop(Pλ(X; q, t)) = Trop(sλ).
Hence Trop(Pλ(X; q, t)) has O(n2 · λ1) complexity.
• (5) and (6) are also indexed by partitions λ and dominated by sλ. Thus, Proposi-

tion 2.3 implies their tropicalizations have O(n2 · λ1) complexity.
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