Module 6 - Measuring Long-term Liabilities

- Value of a liability is the cash that would be required to pay the liability in full today
- Money has time value
\square So most people willing to accept less today than they would if a liability were paid in the future
-Thus liabilities to be paid in the future usually involve interest

Calculating Present value factors Present value of a lump sum

1. Financial calculator

2. PV tables (see appendix in online Wiley text)
3. PV factor equations - personal favorite

PV factor for lump sum$=\frac{1}{(1+i)^{N}}$	Where "i" equals interest rate and " N " equals periods

Present Value and Future Value

- Present value of \$1
\square The value today of $\$ 1$ to be received or paid at some future date, given a specified interest rate

Present Value and Future Value

Future value........................ \$10,000 PV factor of \$1
where $\mathrm{n}=4$
where $\mathrm{i}=10 \% \times 0.6830$
PV of payment \$ 6,830

Present Value and Future Value

Present Value in Savings.......\$6.830
FV factor of a \$1
where $\mathrm{n}=4$
where $\mathrm{i}=10 \% . \times 1.4641$
Future Value......................... \$10,000

Problem - calculating present value of a lump sum

- Computing PV of a single Sum

1. $\$ 15,000$ due in 5 years at 8% compounded annually
2. $\$ 25,000$ due in $81 / 2$ years at 10% compounded semi-annually
3. $\$ 9,500$ due in 4 years at 12% compounded quarterly
4. $\$ 20,000$ due in 20 years at 8% compounded semi-annually

Problem - calculating future value of a lump sum

- Computing the FV of a single sum

1. $\$ 10,209$ invested to earn interest 8% compounded annually for 5 years
2. $\$ 10,907$ invested to earn interest 10% compounded semi-annually $81 / 2$ years
3. $\$ 5,920$ invested to earn interest 12% compounded quarterly for 4 years
4. $\$ 4,166$ invested to earn interest 8%
 compounded semi-annually for 20 yrs

Calculating Present value factors Present value of an annuity

PV factor for an annuity or a stream of equal cash flows

This part of the expression is essentially the present value factor of a lump sum

Where "i" equals interest rate and "N" equals periods

Present Value of an Annuity

Amount of the annual payment...\$10,000 PV factor of an annuity
where $\mathrm{n}=10$ payments
where $\mathrm{i}=12 \%$
Value

Problem - calculating present value of an annuity

- What is the present value (rounded to the nearest dollar) of an annuity of $\$ 8,000$ per year for five year if the interest rate is:

1. 8% compounded annually
2. 10% compounded annually

