ASM 305: GPS and Precision Agriculture

Instructor:	Dev Shrestha	Office: JML 81B Phone: 208 885 7545 E-mail: devs@uidaho.edu
Meeting:		Lecture: JML 42 (MW) 8:30-9:20 AM Lab: JML 82 (T) 2:00 – 4:50 PM
Office hours	3:	MW; 9:30-11:30 AM (Walk-ins welcome)

Course description

This course will cover the fundamentals of Global Positioning System (GPS) and precision agricultural components. The course covers both principle and practices in precision agriculture such as GPS, Geographic Information System (GIS), yield monitors, soil sampling, and variable rate applications (VRA). Hardware and software that are commercially available are examined and compared for their value and utility. Economics and environmental aspects of agriculture are discussed. The course consists of two 50-minutes lectures and one three-hour lab per week for 15 weeks.

Learning outcomes

Through active learning in this course, by the end of the semester you should have greater competency in the following skills, understandings and appreciations related to precision agriculture. They are consistent with the university's learning outcomes.

1. Learn and integrate -

- Understand the philosophy and need behind precision agriculture
- Understand the fundamental enabling technologies such as GPS, GIS, Yield Monitors, Crop modeling, and VRA technologies

2. Think and create -

- Analyze spatial and temporal variability information
- Decision making on appropriate level of technology need
- Risk assessment through crop modeling in decision making
- 3. Communicate -
 - Evaluate and develop management strategy. Present the analysis in written form
 - Evaluate the risk involved with variable rate application and technologies and communicate with potential clients
- 4. Practice citizenship -
 - Understand the components of sustainability in production agriculture
 - Understand in how precision agriculture can help reduce the environmental impact from agriculture and enhance sustainability
 - Understand the future of agricultural technologies and how students can be a part of this development.

Books

Text:

The Precision - Farming Guide for Agriculturists, 2010 Edition By: Ess, D. and Morgan, M.

Reference:

- Handbook of Precision Agriculture: Principles And Applications by: Ancha Srinivasan
- Class handouts, Web references

Tentative class schedule

Date	Title
26-Aug	Introduction to Precision agriculture
28-Aug	Components of precision agriculture
2-Sep	Labor day - UI closed
4-Sep	GPS - Introduction, triangulation, components
9-Sep	Error sources and analysis in position measurement
11-Sep	Differential and RTK GPS
16-Sep	GPS communication hardware and cost analysis
18-Sep	Auto guidance system hardware and software
23-Sep	Remote sensing and image analysis I
25-Sep	Remote sensing and image analysis I
30-Sep	Coordinate system and map projection
2-Oct	Introduction to spatial analysis and GIS
7-Oct	Understanding and characterizing spatial variability
9-Oct	Soil sampling and testing (Hardware included)
14-Oct	Yield monitoring and mapping
16-Oct	Midterm exam
21-Oct	Out of town
23-Oct	Out of town
28-Oct	Managing spatial and temporal variability
30-Oct	Concepts of DSSAT crop modeling I
4-Nov	Concepts of DSSAT crop modeling II
6-Nov	Concepts of DSSAT crop modeling I
11-Nov	Concepts of variable rate application (VRA)
13-Nov	Components of VRA
18-Nov	Sensors and actuators used in VRA
20-Nov	Cost analysis of VRA
25-Nov	Fall recess
27-Nov	Fall recess
2-Dec	Risk assessment in using VRA
4-Dec	Economic analysis
9-Dec	Risk management and other technological issues
11-Dec	Course Review

Tentative Lab Schedule

Date	Lab title
27-Aug	Web resources for Precision Agriculture
3-Sep	Using a handheld GPS and Measuring Distance between Two Points.
10-Sep	Analyzing GPS error
17-Sep	Differential and RTK GPS
24-Sep	Communicatin with GPS unit
1-Oct	Connecting a lightbar guidance system
8-Oct	Navigating and using lightbar guidance system
15-Oct	Introduction to SMS field management software
22-Oct	Out of town
29-Oct	Remote sensing and image analysis
5-Nov	Introduction to DSSAT crop model I
12-Nov	Introduction to DSSAT crop model II
19-Nov	Creating a prescription map
26-Nov	Fall recessFall recess
3-Dec	Variable rate application I
10-Dec	Variable rate application II

The laboratory reports are due the following week a lab is completed. Only one lab report per group is adequate. The lab reports should be professional looking and free of errors. Other details will be discussed in the class.

Grading:

Class Attendance	10%	Laboratory Reports	20%
Homework	20%	Midterm Exam ¹	20%
Final Exam ²	30%		

Disability Support Services Reasonable Accommodations Statement:

Reasonable accommodations are available for students who have documented temporary or permanent disabilities. Please notify your instructor(s) during the first week of class regarding accommodation(s) needed for the course. All accommodations must be approved through Disability Support Services located in the Idaho Commons Building, Room 306.

¹ MIDTERM EXAM: Wednesday, October 16, 8:30 AM – 9:20 AM

² FINAL EXAM: Thursday, December 19, 7:30 AM – 9:30 AM