Single and Three Phase Systems Summary

1. Notation for instantaneous and phasor quantities:

 (a) Instantaneous: \(v(t) = V_{\text{max}} \cos(\omega t + \theta_v) \)

 (b) RMS Phasor quantity: \(V = \frac{V_{\text{max}}}{\sqrt{2}} / \theta_v \)

2. Instantaneous single phase power: \(p(t) = \frac{1}{2} V_{\text{max}} I_{\text{max}} [\cos(\theta_v - \theta_i) + \cos(2\omega t + \theta_v + \theta_i)] \)

3. Average single phase power: \(P_{\text{av}} = \frac{1}{2} V_{\text{max}} I_{\text{max}} [\cos(\theta_v - \theta_i)] \)

4. Power Factor

 (a) Power factor angle (\(\phi \)) = \(\theta_v - \theta_i \)

 (b) \(-90^\circ \leq \phi \leq 90^\circ\)

 (c) Power factor: \(p_f = \cos(\phi), 0 \leq p_f \leq 1 \)

 (d) Lagging Power Factor: \(\phi > 0 \)

 (e) Leading Power Factor: \(\phi < 0 \)

5. Three Phase Power

 (a) \(S_3 = 3V_0 I_0^* \)

 \(|S_3| = \sqrt{3} |V_0| |I_0^*| \)

 (b) \(P = 3|V_0| |I_0^*| \cos \phi \)

 (c) \(Q = 3|V_0| |I_0^*| \sin \phi \)

 (d) \(P = \sqrt{3} |V_0| |I_0^*| \cos \phi \) (\(\phi \) is the angle between Phase quantities!)

 (e) \(Q = \sqrt{3} |V_0| |I_0^*| \sin \phi \)

 (f) Power dissipated in shunt resistor (Y connected):

 \(P = \frac{3|V_0|^2}{R} = \frac{|V_0|^2}{R} \)

 (g) Reactive power to/from Y connected shunt reactance (capacitor or reactor)

 \(Q = \frac{3|V_0|^2}{X} = \frac{|V_0|^2}{X} \)

6. \(Z_\Delta = 3Z_Y \)

\(\text{inductive} \)
Transformers

1. Single Phase Ideal Transformer Relations:

\[\frac{V_1}{N_1} = \frac{V_2}{N_2} = \frac{V_3}{N_3} \quad 0 = I_1 N_1 + I_2 N_2 + I_3 N_3 \]

2. Three Phase Transformers:

\[\overline{V}_2 = K \overline{V}_1 \quad \overline{I}_2 = \frac{1}{K} \overline{I}_1 \]

\[Y - Y : K_{YY} = \frac{N_2}{N_1} \]

\[\Delta - \Delta : K_{\Delta\Delta} = \frac{N_2}{N_1} \]

\[\Delta - Y : K_{\Delta Y} = \sqrt{3} e^{\pm j30^\circ} \frac{N_2}{N_1} \]

\[Y - \Delta : K_{Y\Delta} = \frac{e^{\pm j30^\circ}}{\sqrt{3}} \frac{N_2}{N_1} \]

NOTE: The high voltage side leads the low voltage side by 30° for \(Y - \Delta \) and \(\Delta - Y \) transformers when compare Line-to-Line voltage to Line-to-Line voltage.
Per Unit

\[$ S_B \rightarrow 3\phi \]$ system wide

Voltage Bases

\[V_{LLB} \] - define
\[V_{LNB} = \frac{V_{LLB}}{\sqrt{3}} \]

Choose 1 as starting point

\(\rightarrow \) every time cross a transformer define a new base \(\rightarrow \)

\[V_{B2} = V_{B1} \cdot \left(\frac{V_{T2}}{V_{T1}} \right) \] (Trans Voltage Trans Ratio)
$$I_{B1} = \frac{5B}{(5B + V_{B1})^2}$$

$$E_{B1} = \frac{V_{B1}}{5B}$$
To go back to ohms

1. RC, JXm are on LV
 - HV side is Δ

 ZB2 on LV side
 ZB3 on HV side
\[R_{\text{i}}(\Omega) = R_{\text{i}} \cdot Z_{B2} \]

\[X_{\text{i}}(\Omega) = X_{\text{i}} \cdot Z_{B2} \]

Base on LV side of transformer

\[R_c(\Omega) = R_{\text{c}} \cdot Z_{B2} \]

\[X_m(\Omega) = X_{\text{m}} \cdot Z_{B2} \]

\[R_{\text{z}}(\Omega) = R_{\text{z}} \cdot Z_{B3} \cdot 3 \]

\[X_{\text{z}}(\Omega) = X_{\text{z}} \cdot Z_{B3} \cdot 3 \]

Assumes 4
- If impedances are given in \(\Omega \)
 - Divide by appropriate \(Z_b \)

- If impedance is in per unit
 - Renormalize to system base
 - If the equipment base is different
 - Transformers, Electric Machines
 - Per unit or equipment rating base
\[3E \]

138 kV, 13.8 kV
200 MVA
\[x = 0.1 \text{ pu} \]
\[x/R = 10 \]

System

\[V_{B1} = 132 \text{kV} \]
\[V_{B2} = 132 \text{kV} \left(\frac{13.8}{138} \right) = 13.2 \text{kV} \]
\[S_B = 100 \text{ MVA} \]

Change of base calculation

Option 1: Convert pu. value to ohms on either HV or LV winding.

Option 2: Convert to per unit on sys base on same side of xformer.
(2) Change to base equation

\[X_{pu\ new} = X_{pu\ old} \left(\frac{V_{B\ old}}{V_{B\ new}} \right)^2 \left(\frac{5B_{new}}{5B_{old}} \right) \]

Loads - calculate equivalent impedance using \(\overline{5_{30}} \) and rated voltage
Per unit equivalent circuit