Determining Current References from P and Q commands

- Reference: See Chapter 8 in Yazdani and Iravani, specifically section 8.4

Park's Transformation in Matrix Form

Using any of these transformations:

\[V_{0dq}(t) = P(t) \cdot \begin{pmatrix} v_a(t) \\ v_b(t) \\ v_c(t) \end{pmatrix} \]

\[I_{0dq}(t) = P(t) \cdot \begin{pmatrix} i_a(t) \\ i_b(t) \\ i_c(t) \end{pmatrix} \]

In DQ reference frame using option 1 for the transformation matrix:

\[P_{0dq_option1} = \frac{3}{2} \left(v_d \cdot i_d + v_q \cdot i_q + v_0 \cdot i_0 \right) \]

\[Q_{0dq_option1} = \frac{3}{2} \left(v_q \cdot i_d - v_d \cdot i_q \right) \]

- Note: we need the 3/2 term because of 2/3 constant in transformation matrix.
- This applies for transformation implemented in ATPDraw in class and in PSCAD/EMTDC
- The Q equation will have a negative sign in front in PSCAD/EMTDC
- When we define the reference for v_d to align with the positive peak $v_a(t)$ at the point of interconnect, then v_q is zero.
- In addition, i_0 is always 0 in a three wire system, so the $P_{0dq_option1}$ reduces to:

$$P_{0dq_option1} = \frac{3}{2} (v_d \cdot i_d)$$

$$Q_{0dq_option1} = -\frac{3}{2} (v_d \cdot i_q)$$

- Note this will have a positive sign in PSCAD/EMTDC

- Given a P_{command} and Q_{command} we can create I_{d_ref} and I_{q_ref} with the following:

$$I_{d_ref} = \frac{2}{3} \left(\frac{P_{\text{command}}}{v_d} \right)$$

where v_d is measured voltage

$$I_{q_ref} = -\frac{2}{3} \left(\frac{Q_{\text{command}}}{v_d} \right)$$

where v_d is again a measured voltage

DQ reference frame using option 2 for the transformation matrix:

$$P_{0dq_option2} = (v_d \cdot i_d + v_q \cdot i_q + v_0 \cdot i_0)$$

$$Q_{0dq_option2} = (v_q \cdot i_d - v_d \cdot i_q)$$

- Note: we do not need with the SQRT(2/3) in the transformation matrix
- This applies using the built-in transformation in ATPDraw

- When we define the reference for v_d to align with the positive peak $v_a(t)$ at the point of interconnect, then v_q is zero.
- In addition, i_0 is always 0 in a three wire system, so the $P_{0dq_option1}$ reduces to:

$$P_{0dq_option2} = (v_d \cdot i_d)$$

$$Q_{0dq_option2} = -v_d \cdot i_q$$
• Given a P_{command} and Q_{command} we can create $I_{d\text{ref}}$ and $I_{q\text{ref}}$ with the following:

$$
I_{d\text{ref}} = \left(\frac{P_{\text{command}}}{v_d} \right) \quad \text{where } v_d \text{ is measured voltage}
$$

$$
I_{q\text{ref}} = \left(\frac{-Q_{\text{command}}}{v_d} \right) \quad \text{where } v_d \text{ is measured voltage}
$$

ATPDraw implementation

- P_{ref} and Q_{ref} and $P_{3\text{ph}}$ and $Q_{3\text{ph}}$
ATPDraw component for ABC to 0dq or 0-alpha-beta

PSCAD/EMTDC implementation
<table>
<thead>
<tr>
<th>Main : P3ph, Q3ph, Pref, Qref</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.50</td>
</tr>
<tr>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main : Id, Iq, Idref, Iqref</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.0</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main : Md, Mq</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>