ECE 529
Utility Applications of Power Electronics
Session 21
Three Phase VSC Locked Loop (PLL)

Cases where synchronization is needed
- Non-PWM switching schemes
- Synchronous PWM switching schemes
- When control loop operates in the synchronous DQ reference frame
- Control loop for α−β may or may not need synchronizing reference
 - Frequency comes along with measured α and β terms
 - May need depending on method for determining current references

Park's Transform Based PLL
- Measured voltages
 \[
 v_{sd} = V_s \cos(\omega_0 t + \theta_0 - \rho(t))
 \]
 \[
 v_{sq} = V_s \sin(\omega_0 t + \theta_0 - \rho(t))
 \]
- Output current equations in transformed domain
 \[
 L \left(\frac{d}{dt} i_d \right) = L \omega(t) i_q - (R + r_{on}) i_d + v_{td} - v_{sd}
 \]
 \[
 L \left(\frac{d}{dt} i_q \right) = L \omega(t) i_d - (R + r_{on}) i_q + v_{tq} - v_{sq}
 \]
- \(\frac{d}{dt} \rho(t) = \omega(t) \) is a free variable

The choice of \(\rho(t) \) makes a big difference. If it's 0, stay in α−β frame (no rotation)
In this case we want:
\[
\rho(t) = \omega_0 t + \theta_0
\]
\[
\frac{d}{dt} \rho(t) = \omega_0 - \text{grid freq}
\]
- Then \(\frac{d}{dt} \rho(t) = \omega_0 \)
- If this is the case, then
 \[
 v_{sq} = 0 \quad \text{and} \quad v_{sd} = V_s
 \]
- Design a feedback controller to regulate \(v_{sq} \) to be 0
 \[
 \omega(t) = H(p) v_{sq}(t) \quad \text{where} \quad H(p) \text{ is a linear transfer function}
 \]
- Start it out from
 \[\omega(0) = \omega_0 \]

- Limit frequency range to narrow variation from
 \[\omega_{\text{min}} < \omega < \omega_{\text{max}} \]

- Small frequency variations imply
 \[\sin(\omega_0 t + \theta_0 - \rho(t)) \approx \sin(\omega_0 t + \theta_0 - \rho(t)) \]

which simplifies control loop design

\[\frac{d}{df} \rho(t) = V_s H(p)(\omega_0 t + \theta_0 - \rho(t)) \]

- Basic control diagram:

- Three phase implementation:
Blue Cut Fire

phase jump due to a fault

U/I
PERR and THETAR with phase jump due to load change

Synchronization

PERR and THETAR with sustained SLG Fault

Synchronization
Results with PLL--SLG Fault

Kp=100, Ti=8.3E-3

Kp=1000, Ti=8.3E-4

Results with PLL--Three Phase Fault

Kp=100, Ti=8.3E-3

Kp=1000, Ti=8.3E-4
Compare ωt with PLL THETAR (phase jump case)

Synchronization 13
Spring 2021

Compare ωt with PLL THETAR (SLG fault case)

Synchronization 14
Spring 2021
Two Axis Transformation - Unbalanced

Imitation Measured Currents:

- Define array of time and define angular frequency:
 \[t := 0 \text{sec}, 0.0001 \text{sec}.. \frac{6}{60\text{Hz}} \]
 \[\omega_0 := 2\cdot\pi\cdot60\text{rad/s} \quad \omega(t) := \omega_0 \]

- Voltage as a function of time (negative sequence rotation)
 \[V_{\text{mag}} := 15\text{kV} \]
 \[v_a(t) := \sqrt{2}\cdot V_{\text{mag}} \cdot \cos(\omega(t)\cdot t) \]
 \[v_b(t) := \sqrt{2}\cdot V_{\text{mag}} \cdot \cos(\omega(t)\cdot t + 120\text{deg}) \]
 \[v_c(t) := \sqrt{2}\cdot V_{\text{mag}} \cdot \cos(\omega(t)\cdot t - 120\text{deg}) \]

Transform measured voltage and currents to the stationary dq0 (αβ) reference frame:

- Use equations from the Clarke Transformation instead of matrix for now

\[v_{ds}(t) := \frac{2}{3} \left(v_a(t) - 0.5 \cdot v_b(t) - 0.5 \cdot v_c(t) \right) \]

\[v_{qs}(t) := \frac{v_b(t) - v_c(t)}{\sqrt{3}} \quad \text{Q axis 180 out of phase with some definitions} \]
Transformed voltages (note that $v_{ds}(t)$ is still in phase with $v_{a}(t)$). **But $v_{qs}(t)$ has shifted position**

\[\theta r(t) := 2 \cdot \pi \cdot 60.7 \text{Hz} \cdot t \]

- Now apply positive sequence rotating reference frame transformation in steps

\[v_{dr1}(t) := v_{ds}(t) \cdot \cos(\theta r(t)) \]
\[v_{dr2}(t) := v_{qs}(t) \sin(\theta r(t)) \]

\[v_{dr}(t) := v_{dr1}(t) + v_{dr2}(t) \]

\[v_{qr1}(t) := v_{ds}(t) \sin(\theta r(t)) \]

\[v_{qr2}(t) := v_{qs}(t) \cos(\theta r(t)) \]

\[v_{qr}(t) := -v_{qr1}(t) + v_{qr2}(t) \]
• Note the 120 Hz variation.

Repeat using $-\theta$

$$\theta_r(t) := -2\pi \cdot 60.0\text{Hz} \cdot t$$

• Now apply positive sequence rotating reference frame transformation in steps, using the negative rotation angle

$$v_{dr1}(t) := v_{ds}(t) \cdot \cos(\theta_r(t)) \quad v_{dr2}(t) := v_{qs}(t) \cdot \sin(\theta_r(t))$$

$$v_{dr}(t) := v_{dr1}(t) + v_{dr2}(t)$$

$$v_{qr1}(t) := v_{ds}(t) \cdot \sin(\theta_r(t)) \quad v_{qr2}(t) := v_{qs}(t) \cdot \cos(\theta_r(t))$$

$$v_{qr}(t) := -v_{qr1}(t) + v_{qr2}(t)$$