\[V^2(t) \]

\[V(t) \in \text{phase 1 and 2} \]

\[V_{po1} = V^2 - V^1 \]

If \(I > 0 \):

\[V_{po1} = V^2 \]

If \(I = 0 \):

\[V_{po1} = V^5 \]
\[
\text{Diagram:}
\]

\[
V_{\text{out}} = V_s + I \cdot R
\]

\[I > 0 \text{ (unit: } \mu \text{A})\]
At POI

- In the example: regulated Volt on AC Sys

Solutions / Approaches.
FACTS device
Station or Stack VAR Compensation (VC)

Utility or Distribution System
Elipse

- move Gerald to zero as time

1. Transient (Dynamic)
2. Dynamic Response (Characteristic)

\[V \rightarrow \text{Characteristic} \]

V < 1pu

p.u.

q.p.u.
Max power point tracking

Inverters that allow response beyond
- Smart Inverters - Controls

PV + Wind → Especially distribution
- Applications for inverters on
Distributed/Decentralized Scheme

- Logic Driven Scenarios
- Watt-Volt
- Watt-Var

In some conditions, priority to Var over Watts variations to give...