ECE 529
Utility Applications of Power Electronics
Session 33
Introduction to High Voltage Direct Current (HVDC) Transmission

- Update to Edison's Vision
- AC Power Generation at Relatively Lower Voltage
 » Step Voltage Up to High Levels
- Convert From AC to DC and Back
 » DC Voltages: Pole to Ground up to 800 kV
 » Currents up to about 3000A
- Most Systems Presently Point to Point—Evolving
- Multiterminal Grids
A Little History

- First "Static" Var Compensator (Germany, late 1930’s)
 - saturated reactors in combination with capacitors
 - Continued into the 1960’s (Dr. Erich Friedlander)
- First HVDC project: Berlin-Charlottenburg 1942
- Moscow 1951
- Gotland 1954 (first successful operating project)
- Pacific HVDC Intertie 1970 (one of last Mercury Arc Valve)
- Thyristor Controlled Reactors (TCR), GE, 1970
- HVDC projects move to Thyristors in early 1970’s

Berlin Mercury Arc Valves 1942
Gotland Mercury Arc Valve

HVDC Transmission 5 Spring 2021

Lecture 33

LCC versus VSC HVDC

- The majority use line commutated converter (LCC)
- VSCs are have advantages in several applications
 - Independent control of real and reactive power injection
 - Provide dynamic voltage support to the ac system
 - Less harmonic filters requirement
 - Easier for multiterminal HVDC
- Also disadvantages
 - Losses
 - Lower Vdc and MW ratings (so far)
 - DC faults

HVDC Transmission Lower

current

Spring 2021
HVDC Power Transmission

- No distance limitation for stability
- No distance limit for underground/sea cables
- Controlled power flow
- High power transfer, fewer lines,
 - Narrower ROW
 - Lower losses
- Potentially a firewall against cascading outages

Basic Concepts with HVDC

- Overhead Lines
 - Bulk Power Transfer Over Long Distances
 - Possibly Connecting Asynchronous Systems
- Underwater or Underground Cables
 - Distance Limits Underwater Cables
 - Longer Distances Where Overhead Lines Infeasible
- Back-to-back interconnections
 - Asynchronous systems — same or different frequency