ECE 529
Utility Applications of Power Electronics

Session 39
commutation failure

- Device turning on fails to turn on because one turn on doesn't stop conduct
- More common at inverter

- Keep following wrong phase
 A → B
 Stay on A

\[V_{DC} = 0 \]
\[AT \ V_{DC_{inv}} \]
\[P_{DC} \rightarrow 0 \]
HVDC Control

LCC

LCC Reactive power characteristics

- Operates at lagging power factor
- Both rectifier and inverter operation
- Due to phase control
 - Typically reactive power demand = 55% of station real power rating at full load
 - \(Q_{\text{comp}} \): typically 35% of station rating: ac filters plus shunt banks
 - Shunt reactors sometimes used at light load to absorb excess from filters

Rest power system or synchronous condensers

\(Q \) from system

Choose \(Q \) to keep it around this percent

\(Q_{\text{rect}} \approx 180 \)
Simple 11th harmonic filter

\[\omega L = \frac{1}{\omega C} \]

Phase

-90°

-90°

Inductor

Capacitor 11th

Looks like a capacitor bank at 60Hz

Choose \(L, C \)

1. MVA at 60Hz

2. \(f_0 \)
Short Circuit Ratio

- Commutation performance
- Voltage stability
- Dynamic performance
- Dynamic overvoltage
- Low order harmonic resonance,
- Rule of thumb – ESCR > 2 for LCC
- ESCR = (S_n + S_G + S_SC + Q)/P_DC

Harmonic Characteristics

- AC characteristic current harmonics at f_n = 12n +/- 1
- Short filters: band pass, high pass, double-tuned
- Typical ac filter performance criteria: THD<1.5%, TIF < 45
- DC side voltage harmonics: f_n=12n
- Typically 35% of station rating in installed ac filters
- Harmonic magnitudes diminish with increasing harmonic number
\[I_{SC} = \frac{V_{SH}}{Z_{OP}} \]

\[\text{MVA}_{sc \ pu} = \frac{\text{MVA}}{\text{pu}} \]

\[\text{MVA}_{sc \ pu} = \text{MVA} \]

\[I_{St} = \frac{V_{SC}}{Z_{OP}} \]

\[\text{MVA}_{sc \ pu} = \frac{\text{MVA}}{\text{pu}} \]